K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2017

Lời giải:

1)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\(a^4+3=a^4+1+1+1\geq 4\sqrt[4]{a^4}\)

\(\Leftrightarrow a^4+3\geq 4|a|\geq 4a\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=1\)

2)

Ghi đầy đủ đề:

\(a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2)\geq 6abc\)

Áp dụng BĐT AM-GM cho các số không âm:

\(\text{VT}=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\geq 6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}\)

\(\Leftrightarrow \text{VT}\geq 6\sqrt[6]{a^6b^6c^6}=6|abc|\geq 6abc\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

11 tháng 9 2017

có cách nào k bn, hình như đề k cho k âm

5 tháng 2 2018

a) Áp dụng bất đẳng thức AM-GM : 

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)

b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)

 \(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)

Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

7 tháng 12 2021

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

 

22 tháng 9 2020

\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

VT : (a + b + c)2 + a2 + b2 + c2

= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2

= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)

= (a + b)2 + (b + c)2 + (a + c)2 = VP

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

26 tháng 12 2019

Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.

27 tháng 12 2019

Thấy có lời giải này hay hay nên mình copy lại nha (Trong sách Yếu tố ít nhất - Võ Quốc Bá Cẩn)