Nếu a, b, c là số đo các cạnh của tam giác vuông với a là độ dài cạnh huyền thì các số
x= 9a + 4b + 8c
y= 4a + b + 4c
z= 8a + 4b + 7c
cũng là số đo ác cạnh của 1 tam giác vuông khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z
nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)
<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca
<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)
Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông
Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.
Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,
Áp dụng định lý Pytago.Ta chứng minh được :
x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )
NHỚ TK MK NHALưu Đức Mạnh
tính đc x^2-y^2-z^2=a^2-^b^2-c^2
mà a^2=b^2+c^2
suy ra x^2-y^2-z^2=0
suy ra x^2=y^2+z^2
vậy x;y;z là đọ dài của tam giác vuông
---------------------------------------------------------------------
li-ke cho mình nhé bnQuynh Anh Quach
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Thiếu đề bạn ơi