Tính giá trị của các biểu thức sau :
a) \(\dfrac{6^2.6^3}{3^5}\) b) \(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}\)
c) \(\dfrac{\left(0,125\right)^5.\left(2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,32
b,\(-\frac{1}{10}\)
c,-1000000
d,\(\frac{9}{16}\)
Có \(\left(-2\dfrac{3}{4}+\dfrac{1}{2}\right)^2\)=\(\left(\dfrac{-5}{4}+\dfrac{2}{4}\right)^2\)=\(\left(\dfrac{-3}{4}\right)^2\)=\(\dfrac{\left(-3\right)^2}{4^2}=\dfrac{9}{16}\)
Có \(\dfrac{\left(0,125\right)^5.\left(2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}=\dfrac{\left(0,125.2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}=\dfrac{\left(0,3\right)^5}{\left(-0.3\right)^5.\left(0,01\right)^3}=\dfrac{1}{-1.\left(0,01\right)^3}=\dfrac{1}{-\left(0,01\right)^3}\)
b) \(\left(-2\dfrac{3}{4}+\dfrac{1}{2}\right)^2\)
\(=\left(\dfrac{-11}{4}+\dfrac{1}{2}\right)^2\)
\(=\left(\dfrac{-11}{4}+\dfrac{2}{4}\right)^2\)
\(=\left(\dfrac{-9}{4}\right)^2\)
\(=\dfrac{81}{16}\)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)
c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)
d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)
\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)
\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)
e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)
\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)
\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)
f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)
\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)
g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)
\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)
\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)
\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)
\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)
\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)
\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)
\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)
a) \(\dfrac{6^2.6^3}{3^5}=\dfrac{6^5}{3^5}=2^5\)
b) \(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{5^4.2^4}{5^5.\left(-2\right)^5}=\dfrac{1.1}{5.\left(-2\right)}=\dfrac{1}{-10}=\dfrac{-1}{10}\)
( Mình giải được có 2 bài thôi. ) :)
a) \(\dfrac{6^2.6^3}{3^5}=\dfrac{6^5}{3^5}=3^5\)
b)\(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{\left(25.4\right)^2}{\left(5.\left(-2\right)\right)^5}=\dfrac{\left(100\right)^2}{\left(-10\right)^5}=\dfrac{1}{-10}\)
Còn phần c mình cx đang tắc