Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{6^2.6^3}{3^5}=\dfrac{6^5}{3^5}=2^5\)
b) \(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{5^4.2^4}{5^5.\left(-2\right)^5}=\dfrac{1.1}{5.\left(-2\right)}=\dfrac{1}{-10}=\dfrac{-1}{10}\)
( Mình giải được có 2 bài thôi. ) :)
a) \(\dfrac{6^2.6^3}{3^5}=\dfrac{6^5}{3^5}=3^5\)
b)\(\dfrac{25^2.4^2}{5^5.\left(-2\right)^5}=\dfrac{\left(25.4\right)^2}{\left(5.\left(-2\right)\right)^5}=\dfrac{\left(100\right)^2}{\left(-10\right)^5}=\dfrac{1}{-10}\)
Còn phần c mình cx đang tắc
\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}=\frac{\frac{2^3}{3^3}.\frac{3^2}{4^2}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{\left(-5\right)^3}{12^3}}=\)\(\frac{\frac{1}{6}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{5^3}{2^6.3^3}.\left(-1\right)}=\frac{\frac{1}{2.3}}{\frac{5}{2^4.3^3}}=\frac{2^3.3^2}{5}=\frac{72}{5}\)
Có \(\left(-2\dfrac{3}{4}+\dfrac{1}{2}\right)^2\)=\(\left(\dfrac{-5}{4}+\dfrac{2}{4}\right)^2\)=\(\left(\dfrac{-3}{4}\right)^2\)=\(\dfrac{\left(-3\right)^2}{4^2}=\dfrac{9}{16}\)
Có \(\dfrac{\left(0,125\right)^5.\left(2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}=\dfrac{\left(0,125.2,4\right)^5}{\left(-0,3\right)^5.\left(0,01\right)^3}=\dfrac{\left(0,3\right)^5}{\left(-0.3\right)^5.\left(0,01\right)^3}=\dfrac{1}{-1.\left(0,01\right)^3}=\dfrac{1}{-\left(0,01\right)^3}\)
1. 2008.\(\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009\left(\dfrac{1}{2007}-2\right)\)
=\(\left(2008.\dfrac{1}{2007}-2008.\dfrac{2009}{1004}\right)-\left(2009.\dfrac{1}{2007}-2009.2\right)\)
=\(\left(\dfrac{2008}{2007}-2.2009\right)-\left(\dfrac{2009}{2007}-2.2009\right)\)
=\(\left(\dfrac{2008}{2007}-4018\right)-\left(\dfrac{2009}{2007}-4018\right)\)
=\(\dfrac{2008}{2007}-4018-\dfrac{2009}{2007}+4018\)
=\(\left(\dfrac{2008}{2007}-\dfrac{2009}{2007}\right)+\left[\left(-4018\right)+4018\right]\)
=\(\dfrac{1}{2007}.\left(2008-2009\right)+0\)
=\(\dfrac{1}{2007}.\left(-1\right)+0\)
=\(\dfrac{-1}{2007}\)
2.\(\dfrac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3+4^5}\)
=\(\dfrac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left[\left(2^2.5\right)+5\right]^3+\left(2^2\right)^5}\)
=\(\dfrac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{2^6.5^3+5^3+2^{10}}\)
=\(\dfrac{5^9.2^6-5^7.2^6+5^7.2^{10}}{5^3.\left(2^6+1\right)+2^{10}}\)
=\(\dfrac{5^7.2^6\left(5^2-1-2^4\right)}{5^3\left(2^6+1\right)+2^{10}}\)
bí rồi
\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)
\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{36234378}\)
a/ \(\frac{25^2\times4^2}{5^5\times\left(-2\right)^5}\)= \(\frac{625\times16}{3125\times\left(-32\right)}\)=\(\frac{10000}{-10000}\)= -1