K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a/b=c/d=k

=>a=bk; c=dk

1: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

Do đó; \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)

2: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

\(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{b^2k^2-d^2k^2}{b^2-d^2}=k^2\)

Do đó: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

12 tháng 12 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\end{matrix}\right.\\ \RightarrowĐpcm\)

17 tháng 6 2019

a)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}\) =>\(\frac{a}{c}=\frac{b}{d}\)

=>\(\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

NV
18 tháng 6 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\Rightarrow\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a-c\right)^2}{\left(b-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

6 tháng 12 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

a) \(\left\{{}\begin{matrix}\dfrac{ab}{cd}=\dfrac{b^2t}{d^2t}=\dfrac{b^2}{d^2}\\\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2t^2+b^2}{d^2t^2+d^2}=\dfrac{b^2\left(t^2+1\right)}{d^2\left(t^2+1\right)}=\dfrac{b^2}{d^2}\end{matrix}\right.\Rightarrowđpcm\)

b)\(\left\{{}\begin{matrix}\dfrac{ac}{bd}=\dfrac{t^2bd}{bd}=t^2\\\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2t^2+d^2t^2}{b^2+d^2}=\dfrac{t^2\left(b^2+d^2\right)}{b^2+d^2}\end{matrix}\right.\Rightarrowđpcm\)

17 tháng 8 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow a=bk;c=dk\)

\(VT=\dfrac{ac}{bd}=\dfrac{bkdk}{bd}=\dfrac{bdk^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

17 tháng 8 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) =>\(a=bk,c=dk\)

=> \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k.k=k^2\left(1\right)\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)

=\(\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1)và(2)=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Chúc Bạn Học Tốt

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

2 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

Thay (1) vào từng vế của đề bài:

\(VT=\dfrac{a^2+ac}{c^2-ac}=\dfrac{bk\left(bk+dk\right)}{dk\left(dk-bk\right)}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\)

Vế phải đặt thừa số chung sẽ ra VT => đpcm.

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế

11 tháng 12 2022

a; Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

c: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7b^2k^2-3\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2-3k}{11k^2-8}\)

\(\dfrac{7c^2-3cd}{11c^2-8d^2}=\dfrac{7d^2k^2-3kd^2}{11d^2k^2-8d^2}=\dfrac{7k^2-3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2-3cd}{11c^2-8d^2}\)

8 tháng 12 2021

Xét \(\left(a^2+b^2\right).C-\left(b^2+c^2\right).a=a^2c+b^2a\)=\(b^2a-c^2a=a^2c+ac.c-ac.a=0\)

(thay \(b^2=ac\))

\(\Rightarrow\left(a^2+b^2\right).c=\left(b^2+c^2\right).a\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)