K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :

a^3+b^3+c^3-3abc=0

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

luôn đúng do a+b+c=0

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

Câu 1: 

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)

=>\(a^3+b^3+c^3>=3abc\)

 

16 tháng 6 2016

a) Ta có:

(a + b)2 >= 0 => a2 + b2 >= -2ab

(a - 1)2 >= 0 => a2 + 1 >= 2a

(b - 1)2 >= 0 => b2 + 1 >= 2b

Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b

Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:

a2 + b2 + 1 > -ab + a + b      .đpcm.

b) a + b + c = 0 => a + b = -c => (a + b)3 = -c => a3 + 3a2b +3 ab2 + b3 = -c3

=> a3 + b3 + c3 = -3ab(a + b)   (*)

Mà a + b + c = 0 => a + b = -c 

=> (*) <=>  a3 + b3 + c3 = 3abc     .đpcm.

14 tháng 11 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(\frac{-1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}.\left(-\frac{1}{c}\right)=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{ab}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

14 tháng 11 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\Rightarrow ab+bc+ac=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\left(\frac{1}{a}\right)^3+\left(\frac{1}{b}\right)^3+\left(\frac{1}{c}\right)^3=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

11 tháng 6 2019

•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?

a) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

b) \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )

ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3.(1) 
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b) 
thay vào (2) ta dc 
=3abc 
ta kết luận :vế trái= vế phải 

chúc bn hc tốt

20 tháng 10 2017

nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)