K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Để \(\sqrt{x^2-4}-\sqrt{x+2}=0\), ta có:

\(\sqrt{x^2-4}=\sqrt{x+2}\)

x2 - 4 = x + 2

x(x - 1) = 6

x(x - 1) = 3.2

=> x = 3

29 tháng 8 2017

TCăn bậc hai. Căn bậc baThanks you vẻ

16 tháng 10 2023

loading...  loading...  

a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)

=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)

b: =>(x-căn 15)^2=0

=>x-căn 15=0

=>x=căn 15

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Ta có: $\Delta=(m-3)^2+16>0$ với mọi $m$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m$.

Theo định lý Viet: 

$x_1+x_2=m-3$

$x_1x_2=-4$

Có:

$\sqrt{x_1^2+2020}-x_1=\sqrt{x_2^2+2020}+x_2$

$\Leftrightarrow \sqrt{x_1^2+2020}-\sqrt{x_2^2+2020}=x_1+x_2$

$\Leftrightarrow \frac{x_1^2-x_2^2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}=x_1+x_2$

$\Leftrightarrow (x_1+x_2)\left[\frac{x_1-x_2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}-1\right]=0$

$\Leftrightarrow x_1+x_2=0$ hoặc $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$

Với $x_1+x_2=0$

$\Leftrightarrow m-3=0\Leftrightarrow m=3$ (tm)

Với $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$

$\Rightarrow (x_1-x_2)^2=(\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020})^2$

$\Leftrightarrow -2x_1x_2=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$

$\Leftrightarrow 8=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$

$\Leftrightarrow \sqrt{(x_1^2+2020)(x_2^2+2020)}=-2016<0$ (vô lý - loại)

Vậy $m=3$

11 tháng 7 2023

a)

\(x^2-4\sqrt{15}x+19=0\\ < =>x^2-4\sqrt{15}x+60-41=0\\ < =>\left(x-2\sqrt{15}\right)^2-41=0\\ < =>\left(x-2\sqrt{15}-\sqrt{41}\right)\left(x-2\sqrt{15}+\sqrt{41}\right)=0\\ < =>\left[{}\begin{matrix}x-2\sqrt{15}-\sqrt{41}=0\\x-2\sqrt{15}+\sqrt{41}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=2\sqrt{15}+\sqrt{41}\\x=2\sqrt{15}-\sqrt{41}\end{matrix}\right.\)

b)

\(4x^2+4\sqrt{5}x+5=0\\ < =>\left(2x+\sqrt{5}\right)^2=0\\ < =>2x+\sqrt{5}=0\\ < =>2x=-\sqrt{5}\\ < =>-\dfrac{\sqrt{5}}{2}\)

a: Δ=(4căn 15)^2-4*1*19=164>0

Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{5}-2\sqrt{41}}{2}=2\sqrt{5}-\sqrt{41}\\x_2=2\sqrt{5}+\sqrt{41}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(2x\right)^2+2\cdot2x\cdot\sqrt{5}+5=0\)

=>(2x+căn 5)^2=0

=>2x+căn 5=0

=>x=-1/2*căn 5

11 tháng 2 2022

\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)

\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)

\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)

\(x1\ne0\) \(\Rightarrow0< x1< x2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)

\(\left(2\right)\left(3\right)\Rightarrow m>5\)

\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)

\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)

\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow m\in\phi\)

11 tháng 2 2022

Để pt có 2 nghiệm pb 

\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)

Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)

Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4 

\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)

\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)

 

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

27 tháng 9 2021

\(\left(x^2-x-6\right)\left(x^2-5\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

Mà \(x\in Q\)

\(\Rightarrow x=\left\{-2;3\right\}\)

27 tháng 9 2021

Pt\(\Leftrightarrow\)\(\left[{}\begin{matrix}x^2-x-6=0\\x^2-5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}3\\-2\\-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\)

   Đáp án A