Thực huện phép tính
\(6^2\) . \(6^4\) - \(4^3\)(\(3^6\) - 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(6^6:6^3+4^3\cdot4^3\cdot4^2\)
\(=6^3+4^8\)
\(=216+65536=65752\)
b) Ta có: (-137)+(-129)
=-137-129
=-266
c) Ta có: -84-36
=-(84+36)
=-120
d) Ta có: \(11\cdot37+63\cdot11-49\)
\(=11\cdot\left(37+63\right)-49\)
\(=11\cdot100-49\)
\(=1100-49=1051\)
e) Ta có: \(16:2^3+4:3^3-4\cdot3\)
\(=2^4:2^3+\dfrac{4}{27}-12\)
\(=2+\dfrac{4}{27}-12\)
\(=-10+\dfrac{4}{27}=\dfrac{-270}{27}+\dfrac{4}{27}=\dfrac{-266}{27}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{\sqrt{2}}{2}\right)\cdot3\sqrt{6}\\ =36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\\ =36-36\sqrt{2}+27\sqrt{3}\)
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo)
a, Sửa đề:
\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)
1) 5 + (-4) = 1
2) (-8) + 2 = -6
3) 8 + (-2) = 6
4) 11 + (-3) = 8
5) (-11) + 2 = -9
6) (-7) + 3 = -4
7) (-5) + 5 = 0
8) 11 + (-12) = -1
9) (-18) + 20 = 2
10) (15) + (-12) = 3
11) (-17) + 17 = 0
12) 16 + (-2) = 14
13) (30) + (-14) = 16
14) (-19) + 20 = 1
15) (-18) + 15 = -3
16) (10) + (-6) = 4
17) (-28) + 14 = -14
18) 15 + (-30) = -15
19) (15) + (-4) = 11
20) (-21) + 11 = -10
21) 8 + (-22) = -14
22) (-15) + 4 = -11
23) (-3) + 2 = -1
24) 17 + (-14) = 3
25) 17 + (-14) = 3
\(M=\left(\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right)\left(\sqrt{6}+1\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+1\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+1\right)\)
\(=6+\sqrt{6}-11\sqrt{6}-11=-5-10\sqrt{6}\)
\(M=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+1\right)\)
\(M=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+1\right)\)
\(M=\left[\dfrac{15\left(\sqrt{6}-1\right)}{6-1}+\dfrac{4\left(\sqrt{6}+2\right)}{6-4}-\dfrac{12\left(3+\sqrt{6}\right)}{9-6}\right]\left(\sqrt{6}+1\right)\)
\(M=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+1\right)\)
\(M=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\cdot\left(\sqrt{6}+1\right)\)
\(M=\left(5\sqrt{6}-4\sqrt{6}+1-12\right)\left(\sqrt{6}+1\right)\)
\(M=\left(\sqrt{6}-11\right)\left(\sqrt{6}+1\right)\)
\(M=6+\sqrt{6}-11\sqrt{6}-11\)
\(M=-10\sqrt{6}-5\)
\(6^2.6^4-4^3.\left(3^6-1\right)=36.1296-64.\left(729-1\right)=46656-64.728=46656-46592=64\)