Tìm X thuộc N biết :
x + (x+1)+(x+2)+........+(x+2010)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+x+x+..+x)+(1+2+3+...+2010)=2029099
= x.2011+2021055=2029099
=x.2011=2029099-2021055=8044
=x=8044:2011=4
b) Số số hạng của dãy là :
(2x-2):2+1=x ( số hạng)
Tổng dãy là
(2x+2).x:2=2010
(x+1).x=2010
Ta thấy x+1 và x là 2 STN liên tiếp. Mà 2010 ko là tích của 2 số tự nhiên liên tiếp => ko có x
a) x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 2010 ) = 2029099
Dãy trên có 2011 số hạng.
2011x + ( 1 + 2 + ... + 2010 ) = 2029099
2011x + 2021055 = 2029099
2011x = 8044
x = 4
Bài 1: tìm x thuộc tập hợp N, biết
A) 6x +4x=2010
6 * x + 4 * x = 2010
(6 + 4) * x = 2010
10 * x = 2010
x= 2010 : 10
x= 201
B) (x-10) ×11=0
\(\Rightarrow\)x - 10 = 0
x = 0 + 10
x = 10
Bài 2: tìm x,y thuộc N, biết
A) x×y-2x=0
\(\Rightarrow x\)= 0
B) (x-4)×(x-3)=0
\(\Rightarrow\)x - 4 = 0
x = 0 + 4
x = 4
Bài 3: tính tổng
A) S=1+2+...+2000
Số các số hạng: (2000 - 1) : 1 + 1= 2000 (số)
Tổng: (2000 + 1) * 2000 : 2 = 2 001 000
B) S= 2+4+...+2010
Số các số hạng: (2010 - 2) : 2 +1= 1005 (số)
Tổng: (2010 + 2) * 1005 : 2 = 1 011 030
C) S=1+3+...+2011
Số các số hạng; (2011 - 1) : 2 +1 = 1006 (số)
Tổng: (2011 +1) * 1006 : 2 = 1 012 036
D) 5+10+15+...+2015
Số các số hạng: (2015 - 5) : 5 + 1 = 403 (số)
Tổng: (2015 + 5) * 403 :2 = 407 030
E) 3+6+...+2010
Số các số hạng: (2010 - 3) : 3 +1 = 670 (số)
Tổng: (2010 + 3) * 670 : 2 = 674 355
G)4+8+12+...+2012
Số các số hạng: (2012 - 4) : 4 + 1 = 503 (số)
Tổng: (2012 + 4) * 503 : 2 = 507 024
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)
Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)
Mà (x-2010)2 là số chính phương => (x-2010)2=4 hoặc (x-2010)2=1 hoặc (x-2010)2=0
- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)
=>y2 = 4 => y = 2 (y thuộc N)
- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\left(loại\right)\)
- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)
=>y2=36 => y=6 (y thuộc N)
Vậy các cặp (x;y) là (2012;2);(2018;2);(2010;6)
Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)
Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)
Mà \(\left(x-2010\right)^2\)là số chính phương \(\Rightarrow\left(x-2010\right)^2=4\)hoặc \(\left(x-2010\right)^2=1\)hoặc \(\left(x-2010\right)^2=0\)
- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)
\(\Rightarrow y^2=4\Rightarrow y=2\left(y\inℕ^∗\right)\)
- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\)(loại)
- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)
\(\Rightarrow y^2=36\Rightarrow y=6\left(y\inℕ^∗\right)\)
Vậy các cặp \(\left(x;y\right)\)lần lượt là \(\left(2012;2\right);\left(2018;2\right);\left(2010;6\right)\)
ta có: \(y^2\ge0\forall y\)
\(\Rightarrow-y^2\le0\forall y\)
\(\Rightarrow36-y^2\le36\)
MÀ \(36-y^2=8\left(x-2010\right)^2\)
\(\Rightarrow8\left(x-2010\right)^2\le36\)
\(\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}=\frac{9}{2}=4.5\)
Mà \(x\in N\Rightarrow\left(x-2010\right)^2\le4\)
\(\Rightarrow\left(x-2010\right)\in\){-2;-1;0;1;2}
TH1:(X-2010)=-2\(\Rightarrow8\left(X-2010\right)^2=8\times\left(-2\right)^2=32\Rightarrow36-y^2=32\Rightarrow y^2=4\Rightarrow y=2\)(\(y\in N\))
TH2:(x-2010)=-1\(\Rightarrow\)
TH3:(x-2010)=0\(\Rightarrow\)
TH4:(x-2010)=1\(\Rightarrow\)
TH5:(x-2010)=2\(\Rightarrow\)
Vậy (x;y)\(\in\).......
\(3^x:27=3^{1000}\\ \Rightarrow3^x:3^3=3^{1000}\\ \Rightarrow3^{x-3}=3^{1000}\\ \Rightarrow x-3=1000\\ \Rightarrow x=1003\)
-Ta có: x=a/m=2a/2m=a+a/2m<a+b/2m=Z.Suy ra x<Z (1)
-Z=a+b/2m<b+b/2m=2b/2m=b/m=y.Suy ra Z<y (2)
-Từ (1) và (2).Suy ra x<Z<y
Bạn xem cho kĩ nha khéo nhầm tôi chắn bạn tưởng Z là một số, nhưng tôi queenghi chú thích Z là tập hợp.
\(\left(x-2010\right)^2\ge0\Rightarrow8.\left(x-2010\right)^2\ge0\)
\(\Rightarrow36-y^2\ge0\Rightarrow y^2\le36\Rightarrow y^2=\left\{0,1,4,9,16,25,36\right\}\)
mà \(36-y^2⋮8\Rightarrow y^2=\left\{4,36\right\}\)
TH1: \(y^2=4\Rightarrow y=\pm2\Rightarrow8.\left(x-2010\right)^2=32\Rightarrow\left(x-2010\right)^2=2^2=\left(-2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)
TH2: \(y^2=36\Rightarrow y=\pm6\Rightarrow8.\left(x-2010\right)^2=0\Rightarrow x-2010=0\Rightarrow x=2010\)
Vì x,y thuộc N => các cặp số x,y thỏa mãn là:
(2012,4);(2008,4);(2010,6)