K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2017

Lời giải:

Ta có :

\(66m^2+9n^3-2008\equiv -2008\equiv 2\pmod 3\)

Do đó , ta có thể viết \(66m^2+9n^3-2008=3k+2\) (\(k\in\mathbb{N}\) )

Khi đó, \(A=3^{3k+2}+4=9.3^{3k}+4\)

Thấy rằng \(3^3\equiv 1\pmod {13}\Rightarrow 3^{3k}\equiv 1\pmod {13}\)

\(\Rightarrow 9.3^{3k}+4\equiv 9+4\equiv 0\pmod {13}\)

Do đó, \(A\vdots 13\). Để \(A\in\mathbb{P}\Rightarrow A=13\)

\(\Leftrightarrow 2^{66m^2+9n^3-2008}=9\Rightarrow 66m^2+9n^3-2008=2\)

\(\Leftrightarrow 22m^2+3n^3=670\)

\(\Rightarrow 22m^2=670-3n^2< 670\Leftrightarrow m^2<\frac{670}{22}\)

\(\Leftrightarrow m\leq 5\). Thử từ \(0\rightarrow 5\) ta thu được \((m,n)=(1,6)\)

Vậy cặp $(m,n)=(1,6)$ thỏa mãn

15 tháng 3 2020

\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)

Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)

\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)

\(\Rightarrow A⋮2\forall n\in N\)

Mà 2 là số nguyên tố duy nhất mà chia hết cho 2

\(\Rightarrow n^3-6n^2+9n-2=2\)

\(\Leftrightarrow n^3-6n^2+9n-4=0\)

Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))

Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.

12 tháng 11 2023

giúp tui i mn oiiiiiiiiiiiiiiiiiiiiiiiiiiii

14 tháng 12 2016

a, gọi ước chung lơn nhất của .... là d

4n+3 chia hết cho d

2n+ 3 chia hết cho d

=> 2(2n+3) chia hết cho d

=> 4n+5 chia hết cho d

=> (4n+5)-(4n+3) chia hết cho d

=> 2 chia hết cho d

=> d= 1,2

mà 2n+3 là số lẻ ( ko chia hết cho 2)

=> d= 1

vây ......

20 tháng 12 2020

sai đề bạn ơ

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới