Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (9n+24, 2n+4) =d
=> 9n+24 chia hết cho d => 18n +48 chia hết cho d
2n +4 chia hết cho d => 18n +36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc {1, 2, 3, 4, 6, 12}
Để 9n +24 và 2n +4 là hai số nguyên tố cùng nhau => d=1 => d không chia hết cho 2 và d không chia hết cho 3
+) d không chia hết cho 2
=> 9n +24 không chia hết cho 2=> 9n không chia hết cho 2=> n không chia hết cho 2 => n=2k+1, k thuộc Z
+) d không chia hết cho 3
=> 2n+4 không chia hết cho 3 => 2(n+2) không chia hết cho 3 => n+2 không chia hết cho 3 => n-1 không chia hết cho 3 => n khác 3h+1, h thuộc Z
Em làm tiếp nhé!
đặt ( 9n + 24 , 2n + 4 ) = d
=> 9n + 24 chia hết cho d => 18n + 48 chia hết cho d
2n + 4 chia hết cho d => 18n + 36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc { 1,2,3,4,6,12}
để 9n + 24 và 2n + 4 là 2 số nguyên tố cùng nhau => d = 1 => d không chia hết cho 2 và d không chia hết cho 3
+, d không chia hết cho 2
=> 9n + 24 không chia hết cho 2 => 9n không chia hết cho 2 => n không chia hết cho 2 => n = 2k + 1 , k thuộc Z
+, d không chia hết cho 3
=> 2n + 4 không chia hết cho 3 => 2 (n + 2 ) không chia hết cho 3 => n + 2 không chia hết cho 3 => n - 1 không chia hết cho 3 => n khác 3h + 1 , h thuộc Z
còn lại bn tuej lm nhé
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
2) vì abc + def chia hết cho 37 nên : 1000 abc + 1000 def cũng chia hết cho 37 => 1000 abc + def + 999 def cũng chia hết cho 37
mà ta thấy 999def chia hết cho 37 nên (1000 abc + def ) cũng chia hết cho 37 hay abcdef chia hết cho 37
vậy abcdef là hợp số => ( đpcm )
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
Lời giải:
Ta có :
\(66m^2+9n^3-2008\equiv -2008\equiv 2\pmod 3\)
Do đó , ta có thể viết \(66m^2+9n^3-2008=3k+2\) (\(k\in\mathbb{N}\) )
Khi đó, \(A=3^{3k+2}+4=9.3^{3k}+4\)
Thấy rằng \(3^3\equiv 1\pmod {13}\Rightarrow 3^{3k}\equiv 1\pmod {13}\)
\(\Rightarrow 9.3^{3k}+4\equiv 9+4\equiv 0\pmod {13}\)
Do đó, \(A\vdots 13\). Để \(A\in\mathbb{P}\Rightarrow A=13\)
\(\Leftrightarrow 2^{66m^2+9n^3-2008}=9\Rightarrow 66m^2+9n^3-2008=2\)
\(\Leftrightarrow 22m^2+3n^3=670\)
\(\Rightarrow 22m^2=670-3n^2< 670\Leftrightarrow m^2<\frac{670}{22}\)
\(\Leftrightarrow m\leq 5\). Thử từ \(0\rightarrow 5\) ta thu được \((m,n)=(1,6)\)
Vậy cặp $(m,n)=(1,6)$ thỏa mãn