Tìm gtln của : \(\dfrac{7}{3+\sqrt{x^2-4x+6}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
Lời giải:
Ta thấy: $\sqrt{x}\geq 0$ với mọi $x\geq 0$
$\Leftrightarrow \sqrt{x}+3\geq 3$
$\Rightarrow E=11+\frac{6}{\sqrt{x}+3}\leq 11+\frac{6}{3}=13$
Vậy GTLN của $E$ là $13$. Giá trị này đạt tại $x=0$
$E$ không có giá trị nhỏ nhất.
------------------------
$F=\frac{\sqrt{x}+3-5}{\sqrt{x}+3}=1-\frac{5}{\sqrt{x}+3}$
Ở trên ta chỉ ra được: $\sqrt{x}+3\geq 3$
$\Rightarrow \frac{5}{\sqrt{x}+3}\leq \frac{5}{3}$
$\Rightarrow F=1-\frac{5}{3}\geq 1-\frac{5}{3}=-\frac{2}{3}$
Vậy $F_{\min}=\frac{-2}{3}$ tại $x=0$
1: ĐKXĐ: \(a>-2\)
2: ĐKXĐ: \(x\ne2\)
3: ĐKXĐ: \(a\in\varnothing\)
1)
\(-\dfrac{1}{\sqrt{a+2}}\) có nghĩa khi \(\sqrt{a+2}>0\)
=>a+2>0
a>-2
2)
\(\sqrt{\dfrac{3}{\left(x-2\right)^2}}=\dfrac{\sqrt{3}}{\sqrt{\left(x-2\right)^2}}\)
mà \(\left(x-2\right)^2>0=>\sqrt{\left(x-2\right)^2}>0vớimọix\)
3)
\(\sqrt{\dfrac{-3}{a^2-4a+4}}=\sqrt{\dfrac{-3}{\left(a-2\right)^2}}cónghĩakhi\left(a-2\right)^2< 0mà\left(a-2\right)^2>0=>biểuthứckocónghĩavớimọia\)
\(\dfrac{M}{N}=\left(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) (ĐKXĐ: \(x\ge0;x\ne4;x\ne9\))
\(=\left[\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)\(=\left[\dfrac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\left[\dfrac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{2}{\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{M}{N}+1=\dfrac{2}{\sqrt{x}+2}+1\)
Ta thấy: \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}+2\ge2\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+2}+1\le2\forall x\)
\(\Rightarrow Max_P=2\Leftrightarrow\dfrac{2}{\sqrt{x}+2}+1=2\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=1\)
\(\Leftrightarrow\sqrt{x}+2=2\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
#Urushi☕
Bạn tự rút gọn nha .
c) Ta có : \(P\text{=}\dfrac{M}{N}+1\text{=}\dfrac{2}{\sqrt{x}+2}+1\)
Để P có giá trị lớn nhất.
\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}cóGTLN\)
\(\Leftrightarrow\sqrt{x}+2cóGTNN\)
Mà : \(\sqrt{x}+2\ge2\)
\(\Rightarrow\) Để : \(\left(\sqrt{x}+2\right)_{min}\) \(\Leftrightarrow\sqrt{x}\text{=}0\Leftrightarrow x\text{=}0\)
Vậy............
Bạn tham khảo lời giải tại đây:
Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x 2} \dfrac{x^2}{x^2-5x 6}\right):\dfrac{x^4 x^2 1}{x^2-4x 3}\) - Hoc24
ta có : \(\dfrac{7}{3+\sqrt{x^2-4x+6}}\) lớn nhất \(\Leftrightarrow3+\sqrt{x^2-4x+6}\) là số dương bé nhất
ta có : \(\sqrt{x^2-4x+6}=\sqrt{x^2-4x+4+2}=\sqrt{\left(x-2\right)^2+2}\ge\sqrt{2}\) với mọi \(x\)
vây GTNN của \(3+\sqrt{x^2-4x+6}\) bằng \(3+\sqrt{2}\)
khi \(\sqrt{\left(x-2\right)^2+2}=\sqrt{2}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
khi đó \(\dfrac{7}{3+\sqrt{x^2-4x+6}}=\dfrac{7}{3+\sqrt{2^2-4.2+6}}=\dfrac{7}{3+\sqrt{2}}\)
\(=\dfrac{7\left(3-\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{7\left(3-\sqrt{2}\right)}{3^2-\left(\sqrt{2}\right)^2}=\dfrac{7\left(3-\sqrt{2}\right)}{9-2}=\dfrac{7\left(3-\sqrt{2}\right)}{7}=3-\sqrt{2}\)
vậy GTLN của\(\dfrac{7}{3+\sqrt{x^2-4x+6}}\) là \(3-\sqrt{2}\) khi \(x=2\)