\(\dfrac{6}{\sqrt{x}+3}\)

F=\(\dfrac{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:
Ta thấy: $\sqrt{x}\geq 0$ với mọi $x\geq 0$

$\Leftrightarrow \sqrt{x}+3\geq 3$

$\Rightarrow E=11+\frac{6}{\sqrt{x}+3}\leq 11+\frac{6}{3}=13$

Vậy GTLN của $E$ là $13$. Giá trị này đạt tại $x=0$

$E$ không có giá trị nhỏ nhất.

------------------------

$F=\frac{\sqrt{x}+3-5}{\sqrt{x}+3}=1-\frac{5}{\sqrt{x}+3}$

Ở trên ta chỉ ra được: $\sqrt{x}+3\geq 3$

$\Rightarrow \frac{5}{\sqrt{x}+3}\leq \frac{5}{3}$

$\Rightarrow F=1-\frac{5}{3}\geq 1-\frac{5}{3}=-\frac{2}{3}$

Vậy $F_{\min}=\frac{-2}{3}$ tại $x=0$

 

NV
13 tháng 11 2018

Tất cả 3 bài này đều chung một dạng, bậc tử lớn hơn bậc mẫu nên đều không tồn tại GTLN mà chỉ tồn tại GTNN. Cách tìm thường là chia tử cho mẫu rồi khéo léo thêm bớt để sử dụng BĐT Cô-si

a) \(P=\dfrac{x+4}{4\sqrt{x}}=\dfrac{\sqrt{x}}{4}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{4}\dfrac{1}{\sqrt{x}}}=2.\dfrac{1}{2}=1\)

\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}}{4}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=4\)

b) \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{2}+\dfrac{2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{2}+\dfrac{2}{\sqrt{x}+1}-1\)

\(\Rightarrow P\ge2\sqrt{\dfrac{\left(\sqrt{x}+1\right)}{2}\dfrac{2}{\left(\sqrt{x}+1\right)}}-1=2-1=1\)

\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}+1}{2}=\dfrac{2}{\sqrt{x}+1}\Leftrightarrow x=1\)

c)ĐKXĐ: \(x\ge0\Rightarrow\) \(P=\dfrac{x-4}{\sqrt{x}+1}=\sqrt{x}-1-\dfrac{3}{\sqrt{x}+1}\)

\(P_{min}\) khi \(\dfrac{3}{\sqrt{x}+1}\) đạt max \(\Rightarrow\sqrt{x}+1\) đạt min, mà \(\sqrt{x}+1\ge1\) \(\forall x\ge0\) , dấu "=" xảy ra khi \(x=0\)

\(\Rightarrow P_{min}=-4\) khi \(x=0\)

30 tháng 7 2018

\(\sqrt{16x^2}-2x=4x-2x=2x\)

a: \(=\sqrt{11}-1\)

b: \(=3\sqrt{3}+1\)

c: \(=\sqrt{3}+\sqrt{2}\)

d: \(=\sqrt{3}-\sqrt{2}\)

e: \(=\sqrt{3}-1\)

g: \(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

13 tháng 6 2017

E = \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) = \(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

E = \(\sqrt{x}+1+\sqrt{x}\) = \(2\sqrt{x}+1\)

F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)

F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

F = \(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

F = \(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

F = \(\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) = \(\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) = \(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}-4}{4-x}\)

G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{4\sqrt{x}-4}{x-4}\)

G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

G = \(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

G = \(\dfrac{x+2\sqrt{x}+3\sqrt{x}+6-\left(x-2\sqrt{x}-\sqrt{x}+2\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

G = \(\dfrac{x+5\sqrt{x}+6-x+2\sqrt{x}+\sqrt{x}-2-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

G = \(\dfrac{4\sqrt{x}+8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{4}{\sqrt{x}-2}\)

19 tháng 11 2022

a: \(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

b: Khi x=7-4căn 3 thì \(P=\dfrac{7-4\sqrt{3}+16}{2-\sqrt{3}+3}\simeq4.92\)

d: Để P=7 thì \(x+16=7\sqrt{x}+21\)

\(\Leftrightarrow x-7\sqrt{x}-5=0\)

hay \(x=\dfrac{59+7\sqrt{69}}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

ĐKXĐ: \(x\geq 0, x\neq 1\)

Ta có:

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{x+2\sqrt{x}+3}-\frac{(3\sqrt{x}-2)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(2\sqrt{x}+3)(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)

\(=\frac{15\sqrt{x}-11}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{3x+7\sqrt{x}-6}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{2x+\sqrt{x}-3}{(\sqrt{x}+3)(\sqrt{x}-1)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{(\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{-5x+7\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{(\sqrt{x}-1)(2-5\sqrt{x})}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b)

\(A=\frac{1}{2}\Leftrightarrow \frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow 2(2-5\sqrt{x})=\sqrt{x}+3\)

\(\Leftrightarrow 1=11\sqrt{x}\Rightarrow x=\frac{1}{121}\)

c)

\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{17-5(\sqrt{x}+3)}{\sqrt{x}+3}=\frac{17}{\sqrt{x}+3}-5\)

Ta thấy: \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+3\geq 3\Rightarrow A=\frac{17}{\sqrt{x}+3}-5\leq \frac{17}{3}-5=\frac{2}{3}\)

Vậy \(A_{\max}=\frac{2}{3}\)

Dấu bằng xảy ra khi $x=0$

19 tháng 12 2018

ĐK: x\(\ge0,x\ne1\)

a) \(Q=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) Ta có \(Q=0,5\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=0,5\Leftrightarrow2-5\sqrt{x}=0,5\sqrt{x}+1,5\Leftrightarrow0,5=5,5\sqrt{x}\Leftrightarrow\sqrt{x}=\dfrac{1}{11}\Leftrightarrow x=\dfrac{1}{121}\left(tm\right)\)

Vậy \(x=\dfrac{1}{121}\) thì \(Q=0,5\)

c) Ta có \(Q=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}=\dfrac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=\dfrac{17}{\sqrt{x}+3}-5\)

Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\Leftrightarrow\dfrac{17}{\sqrt{x}+3}\le\dfrac{17}{3}\Leftrightarrow\dfrac{17}{\sqrt{x}+3}+\left(-5\right)\le\dfrac{2}{3}\Leftrightarrow\dfrac{17}{\sqrt{x}+3}-5\le\dfrac{2}{3}\Leftrightarrow Q\le\dfrac{2}{3}\)

Dấu bằng xảy ra khi x=0

Vậy GTLN của Q=\(\dfrac{2}{3}\)

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

7 tháng 8 2017

\(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{5}-3}\)

\(=\dfrac{3-\sqrt{5}}{\sqrt{5}-3}\)

= - 1

\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}}{2}\)

\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}\)

\(=\dfrac{\sqrt{5}+1}{2}\)

\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)

\(=\dfrac{2\sqrt{2}+2}{\sqrt{3+2\sqrt{2}}}\)

\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

= 2

\(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)

\(=4+9+16+49\)

= 78

7 tháng 8 2017

\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)

\(=\sqrt{x}-\sqrt{y}\)

\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

\(\left[-\text{tử}-\right]=\sqrt{2}\left(2+\sqrt{3}\right)-\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^2}+\sqrt{2}\left(2-\sqrt{3}\right)+\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)^2}\)

\(=4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(\left[-\text{mẫu}-\right]=2-\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}-\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(=2-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-3}\)

\(=2-\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)-1\)

= 3

Ta có:

\(\dfrac{4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{3}\)

\(=\dfrac{8-\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{3\sqrt{2}}\)

\(=\dfrac{8-\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{3\sqrt{2}}\)

\(=\dfrac{8-\left(\sqrt{3}+1\right)+\left(\sqrt{3}-1\right)}{3\sqrt{2}}=\dfrac{6}{3\sqrt{2}}=\sqrt{2}\)

\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{a}-\sqrt{2}\right)^2}{\left(\sqrt{a}-\sqrt{3}\right)^2}}\)

\(=\dfrac{\left|\sqrt{a}-\sqrt{2}\right|}{\left|\sqrt{a}-\sqrt{3}\right|}\)

17 tháng 8 2018

\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)

\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)

\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)

\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)

\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)

\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)