Với mỗi số thực x,kí hiệu \(\left[x\right]\) để chỉ phần nguyên của số thực x,đó là một số nguyên không vượt quá số thực x.Tìm 2 chữ số tận cùng của số nguyên \(\left[\dfrac{10^{2020}+10^{100}}{10^{101}+7}\right]\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
18 tháng 8 2023
Ta có \(\left[\dfrac{34x+19}{11}\right]=\left[\dfrac{33x+11}{11}+\dfrac{x+8}{11}\right]=\left[x+1+\dfrac{x+8}{11}\right]\)
Nếu \(x< -19\) thì \(\left[\dfrac{34x+19}{11}\right]< 2x+1\) , vô lí.
Nếu \(-19\le x< -8\) thì \(-1\le\dfrac{x+8}{11}< 0\) nên \(\left[x+1+\dfrac{x+8}{11}\right]=x\), suy ra \(x=2x+1\) \(\Rightarrow x=-1\), loại.
Nếu \(-8\le x< 3\) thì \(0\le\dfrac{x+8}{11}< 1\) nên \(\left[x+1+\dfrac{x+8}{11}\right]=x+1\), suy ra \(x+1=2x+1\Leftrightarrow x=0\) (thỏa mãn)
Nếu \(x\ge3\) thì \(\dfrac{34x+19}{11}>2x+2\) hay \(\left[\dfrac{34x+19}{11}\right]\ge2x+2>2x+1\), vô lí.
Vậy \(x=0\)