Bài 1 : So sánh
a) \(\dfrac{2002}{2003}\)và \(\dfrac{14}{13}\)
b) \(\dfrac{-33}{37}\) và \(\dfrac{-34}{35}\)
c) \(\dfrac{-27}{463}\) và \(\dfrac{-1}{-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có :
\(-\dfrac{265}{317}< -\dfrac{83}{317}< -\dfrac{83}{111}\Rightarrow-\dfrac{265}{317}< -\dfrac{83}{111}\)
b)Ta có :
\(\dfrac{2002}{2003}< 1< \dfrac{14}{13}\Rightarrow\dfrac{2002}{2003}< \dfrac{14}{13}\)
c)Ta có :
\(\dfrac{-1}{-3}=\dfrac{1}{3}\Rightarrow-\dfrac{27}{463}< 0< \dfrac{1}{3}\Rightarrow-\dfrac{27}{463}< \dfrac{1}{3}\)
Bài 1:
a) \(\left|3x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))
Bài 2:
a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)
b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)
\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)
\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)
Bài 1:
a) \(\left|3x-5\right|=4\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\) \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\) \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)
\(\Leftrightarrow x=-2004\)
2003 / 2001 = 1 + 2/2001
1999/1997 = 1 + 2/1997
vì 2/ 2001 < 2/1997
nên 1 + 2/2001 < 1 + 2/1997
hay 2003 < 1999/1997
b, = 5/9 x 1/4 + 4/9 x 1/4
= 1/4 x ( 5/9 + 4/9 )
= 1/4 x 1
= 1/4
* Ý a mk k nhớ cách làm ^^, xl *
\(b,\dfrac{5}{9}\times\dfrac{1}{4}+\dfrac{4}{9}\times\dfrac{3}{12}\)
\(=\dfrac{5}{9}\times\dfrac{1}{4}+\dfrac{4}{9}\times\dfrac{1}{4}\)
\(=\dfrac{1}{4}\times\left(\dfrac{5}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{1}{4}\times\dfrac{9}{9}=\dfrac{1}{4}\times1=\dfrac{1}{4}\)
a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)
\(\dfrac{-5}{6}>\dfrac{-91}{104}\)
Ta có: \(2003^{2003}+1=2003^{2002+1}+1và2003^{2004}+1=2003^{2003+1}+1\)
\(\Rightarrow A>B\)
a)\(\dfrac{2002}{2003}\) và \(\dfrac{14}{13}\)
\(\dfrac{2002}{2003}< 1;\dfrac{14}{13}>1\)
\(\Rightarrow\dfrac{2002}{2003}< \dfrac{14}{13}\)
b)\(\dfrac{-33}{37}\) và \(\dfrac{-34}{35}\)
Với phân số âm ,phân số nào cũng tử mà khác mẫu ,mẫu nào lớn hơn thì lớn hơn
\(\Rightarrow\dfrac{-33}{37}>\dfrac{-33}{35}\)
c)\(\dfrac{-27}{463}\) và \(\dfrac{-1}{-3}\)
\(\dfrac{-27}{463}< 0;\dfrac{-1}{-3}=\dfrac{1}{3}>0\)
\(\Rightarrow\dfrac{-27}{463}< \dfrac{-1}{-3}\)