Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{2002}{2003}\) và \(\dfrac{14}{13}\)
\(\dfrac{2002}{2003}< 1;\dfrac{14}{13}>1\)
\(\Rightarrow\dfrac{2002}{2003}< \dfrac{14}{13}\)
b)\(\dfrac{-33}{37}\) và \(\dfrac{-34}{35}\)
Với phân số âm ,phân số nào cũng tử mà khác mẫu ,mẫu nào lớn hơn thì lớn hơn
\(\Rightarrow\dfrac{-33}{37}>\dfrac{-33}{35}\)
c)\(\dfrac{-27}{463}\) và \(\dfrac{-1}{-3}\)
\(\dfrac{-27}{463}< 0;\dfrac{-1}{-3}=\dfrac{1}{3}>0\)
\(\Rightarrow\dfrac{-27}{463}< \dfrac{-1}{-3}\)
a) Ta có : \(\dfrac{-1}{5}< 0< \dfrac{1}{1000}\)
\(\Rightarrow\dfrac{-1}{5}< \dfrac{1}{1000}\)
b) Ta có : \(\dfrac{267}{268}< 1< \dfrac{1347}{1343}\)
=> \(\dfrac{267}{-268}< -\dfrac{1347}{1343}\)
c) \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}=\dfrac{19}{87}>\dfrac{29}{88}\)
=> \(-\dfrac{13}{38}< \dfrac{29}{-88}\)
d) \(\dfrac{181818}{313131}=\dfrac{18}{31}\)
=> \(-\dfrac{18}{31}=-\dfrac{181818}{313131}\)
-1/540<0<1/3780
\(\dfrac{-2003}{2004}>-1>-\dfrac{2005}{2003}\)
a) \(\frac{1}{8}>0>\frac{-3}{8}=>\frac{1}{8}>\frac{-3}{8}\)
b) \(\frac{-3}{7}< 0< 2\frac{1}{2}=>\frac{-3}{7}< 2\frac{1}{2}\)
c) \(-3.9< 0< 0.1=>-3.9< 0.1\)
d) \(-2.3< 0< 3.2=>-2.3< 3.2\)
a)
Ta có:
\(\dfrac{-8}{14}=\dfrac{-4}{7}\): \(\dfrac{2}{27}=\dfrac{2}{27}\) : \(\dfrac{12}{-21}=\dfrac{4}{-7}=\dfrac{-4}{7}\) : \(\dfrac{-36}{63}=\dfrac{-4}{7}\) : \(\dfrac{-12}{-54}=\dfrac{-2}{-9}=\dfrac{2}{9}\) : \(\dfrac{-16}{27}=\dfrac{-16}{27}\)
Vậy trong các phân số trên, các phân số: \(\dfrac{-8}{14};\dfrac{12}{-21};\dfrac{-36}{63}\) biểu diễn cùng 1 số hữu tỉ.
b) Ta có : \(-0,75=\dfrac{-3}{4}\)
\(\Rightarrow3\) phân số cùng biểu diễn số hữu tỉ trên là: \(\dfrac{-6}{8};\dfrac{-9}{12};\dfrac{-12}{16}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Do \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Vì \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\Rightarrow x=-2004\)
Vậy...
a)Ta có :
\(-\dfrac{265}{317}< -\dfrac{83}{317}< -\dfrac{83}{111}\Rightarrow-\dfrac{265}{317}< -\dfrac{83}{111}\)
b)Ta có :
\(\dfrac{2002}{2003}< 1< \dfrac{14}{13}\Rightarrow\dfrac{2002}{2003}< \dfrac{14}{13}\)
c)Ta có :
\(\dfrac{-1}{-3}=\dfrac{1}{3}\Rightarrow-\dfrac{27}{463}< 0< \dfrac{1}{3}\Rightarrow-\dfrac{27}{463}< \dfrac{1}{3}\)
cảm ơn