Tìm x, y, z, nếu x + y + z = \(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Tham khảo nhé:
https://olm.vn/hoi-dap/detail/98915782166.html
Hok tốt~
Dễ thấy nếu \(x=0\)thì\(y=z=0,\Leftrightarrow x=y=z=0\)là 1 bộ giá trị phải tìm.
Gỉa sử x, y và z \(\ne\)0 thì theo đề bài ra \(x+y+z\ne0\). Sử dụng tính chất dãy số bằng nhau, ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Thay kết quả vào dãy tỉ số ban đầu, ta được : \(x=-\frac{1}{2};y=-\frac{5}{6};z=\frac{11}{6}.\)
Vậy ta có : \(x=y=z=0\)hoặc \(x=-\frac{1}{2};y=-\frac{5}{6};z=\frac{11}{6}.\)