Cho B =9n+1/ 3n-2Tìm n Z để biểu thức B có giá trị là số nguyên.
giải bài toán này hộ mik nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+33n−1∈Z2n+33n−1∈Z
<=> 2n + 3 chia hết cho 3n - 1
<=> 6n + 9 chia hết cho 3n - 1
<=> (6n - 2) + 11 chia hết cho 3n - 1
<=> 2(3n - 1) + 11 chia hết cho 3n - 1
<=> 11 chia hết cho 3n - 1
<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}
Thay từng giá trị vào 3n - 1 để tìm n
Rồi xét giá trị của n có nguyên hay không
Nếu không thì vứt
Nếu là số nguyên thì nhận
\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)
\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
3n-1 | 1 | -1 | 11 | -11 |
n | loại | 0 | 4 | loại |
a, bạn sửa lại đề nhé
b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)
\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4 |
`A = (3n + 5)/(n + 4)`
`<=> 17/(n + 4)` là nguyên
`=> n + 4 in Ư (17) = {1; -1; 17; -17}`
`=> n = -3; -5; 13; -21`
bài làm :
a, ta có : \(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)
để A nhận giá trị nguyên thì : \(5-\frac{17}{n+2}\) là số nguyên \(\Rightarrow\left(n+2\right)\) là Ư(17)
\(\Rightarrow\left(n+2\right)\)lần lượt nhận các giá trị \(\pm1,\pm17\)
ta lần lượt :
vậy ta tìm đc n = -3 ; n = -1 ; n = -19 ; n = 15
a/ đặt \(A=\frac{-5}{n-2}\) để Athuộc Z suy ra n-2 thuộc ước của -5=(-1 1 5 -5)
Ta có bảng:
n-2 | -1 | 1 | -5 | 5 |
n | 1 | 3 | -3 | 7 |
Để bthức đạt gtrị nguyên thì n thuộc ước của -5
n\(\varepsilon\)\(\hept{\begin{cases}\\\end{cases}}\pm1,\pm5\)
\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)
Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(2\right)\)
Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
2.
\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)
\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)
\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............
\(B=\frac{9n+1}{3n-2}=\frac{3\left(3n-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)
\(\Rightarrow3n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(B=\frac{9n+1}{3n-2}=\frac{3.\left(3-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)
=>3n-2 \(\in\)Ư(7)={\(\pm\)1;\(\pm\)7}
ta có bảng giá trị sau: