Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+33n−1∈Z2n+33n−1∈Z
<=> 2n + 3 chia hết cho 3n - 1
<=> 6n + 9 chia hết cho 3n - 1
<=> (6n - 2) + 11 chia hết cho 3n - 1
<=> 2(3n - 1) + 11 chia hết cho 3n - 1
<=> 11 chia hết cho 3n - 1
<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}
Thay từng giá trị vào 3n - 1 để tìm n
Rồi xét giá trị của n có nguyên hay không
Nếu không thì vứt
Nếu là số nguyên thì nhận
\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)
\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
3n-1 | 1 | -1 | 11 | -11 |
n | loại | 0 | 4 | loại |
a, bạn sửa lại đề nhé
b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)
\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4 |
`A = (3n + 5)/(n + 4)`
`<=> 17/(n + 4)` là nguyên
`=> n + 4 in Ư (17) = {1; -1; 17; -17}`
`=> n = -3; -5; 13; -21`
bài làm :
a, ta có : \(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)
để A nhận giá trị nguyên thì : \(5-\frac{17}{n+2}\) là số nguyên \(\Rightarrow\left(n+2\right)\) là Ư(17)
\(\Rightarrow\left(n+2\right)\)lần lượt nhận các giá trị \(\pm1,\pm17\)
ta lần lượt :
- với n + 2 = -1 => n = -3
- với n + 2 = 1 => n = -1
- với n + 2 = -17 => n = -19
- với n + 2 = 17 => n = 15
vậy ta tìm đc n = -3 ; n = -1 ; n = -19 ; n = 15
a/ đặt \(A=\frac{-5}{n-2}\) để Athuộc Z suy ra n-2 thuộc ước của -5=(-1 1 5 -5)
Ta có bảng:
n-2 | -1 | 1 | -5 | 5 |
n | 1 | 3 | -3 | 7 |
Để bthức đạt gtrị nguyên thì n thuộc ước của -5
n\(\varepsilon\)\(\hept{\begin{cases}\\\end{cases}}\pm1,\pm5\)
a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)
Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)
\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Ta có :
+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)
+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)
Vậy...
b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)
Ta có :
\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)
\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n
Vậy...
\(B=\frac{9n+1}{3n-2}=\frac{3\left(3n-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)
\(\Rightarrow3n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(B=\frac{9n+1}{3n-2}=\frac{3.\left(3-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)
=>3n-2 \(\in\)Ư(7)={\(\pm\)1;\(\pm\)7}
ta có bảng giá trị sau: