K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

\(B=\frac{9n+1}{3n-2}=\frac{3\left(3n-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)

\(\Rightarrow3n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

3n - 21-17-7
n1loại3loại
25 tháng 8 2021

\(B=\frac{9n+1}{3n-2}=\frac{3.\left(3-2\right)+7}{3n-2}=3+\frac{7}{3n-2}\)

=>3n-2 \(\in\)Ư(7)={\(\pm\)1;\(\pm\)7}

ta có bảng giá trị sau:

3n-217-1-7 
n13loạiloại 
10 tháng 5 2022

2n+33n−1∈Z2n+33n−1∈Z

<=> 2n + 3    chia hết cho    3n - 1

<=> 6n + 9    chia hết cho     3n - 1

<=> (6n - 2) + 11    chia hết cho    3n - 1

<=>  2(3n - 1) + 11    chia hết cho    3n - 1

<=> 11    chia hết cho 3n - 1

<=> 3n - 1 thuộc Ư(11) = {±1;±11±1;±11}

Thay từng giá trị vào 3n - 1 để tìm n 

Rồi xét giá trị của n có nguyên hay không 

Nếu không thì vứt

Nếu là số nguyên thì nhận

10 tháng 5 2022

\(\dfrac{6n+9}{3n-1}=\dfrac{2\left(3n-1\right)+11}{3n-1}=2+\dfrac{11}{3n-1}\)

\(\Rightarrow3n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

 

3n-1 1 -1 11 -11
n loại 0 4 loại

 

 

4 tháng 8 2021

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4
8 tháng 5 2022

`A = (3n + 5)/(n + 4)`

`<=> 17/(n + 4)` là nguyên

`=> n + 4 in Ư (17) = {1; -1; 17; -17}`

`=> n = -3; -5; 13; -21`

8 tháng 5 2022

cảm ơn nha!! ko có bn chắc mik quên lun

 

27 tháng 11 2018

bài làm :

a, ta có : \(A=\frac{5n-7}{n+2}=\frac{5\left(n+2\right)-17}{n+2}=5-\frac{17}{n+2}\)

để A nhận giá trị nguyên thì : \(5-\frac{17}{n+2}\) là số nguyên \(\Rightarrow\left(n+2\right)\) là Ư(17)

\(\Rightarrow\left(n+2\right)\)lần lượt nhận các giá trị \(\pm1,\pm17\)

ta lần lượt :

  • với n + 2 = -1 => n = -3
  • với n + 2 = 1 => n = -1
  • với n + 2 = -17 =>  n = -19
  • với n + 2 = 17 => n = 15

​vậy ta tìm đc n = -3 ; n = -1 ; n = -19 ; n = 15

10 tháng 4 2018

a/ đặt \(A=\frac{-5}{n-2}\) để Athuộc Z suy ra n-2 thuộc ước của -5=(-1 1 5 -5)

Ta có bảng:

n-2-11-55
n13-37
10 tháng 4 2018

Để bthức đạt gtrị nguyên thì n thuộc ước của -5 

n\(\varepsilon\)\(\hept{\begin{cases}\\\end{cases}}\pm1,\pm5\)   

29 tháng 1 2021

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

29 tháng 1 2021

tm là gì v