Tìm số nguyên tố n để:
a.\(n+3⋮n^2+1\)
b.\(\left(n+2\right)\left(n+3\right)⋮3n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu n chẵn thì \(\left(n^2+1\right)3n\) chẵn, mà \(6\left(n^2+1\right)\) chẵn nên A chẵn
- Nếu n lẻ thì \(\left(n^2+1\right)3n\) chẵn, mà \(6\left(n^2+1\right)\) chẵn nên A chẵn
Do đó \(\forall n\in N\) thì A chẵn, mà A là số nguyên tố => A = 2
Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)
\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)
\(\Leftrightarrow3n^3-6n^2+3n-8=0\)
Mà \(n\in N\) nên ko tìm đc giá trị của n để A là số nguyên tố.
Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào
\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)
a: để P là số nguyên thì \(3n-3+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)
\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)
\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)
\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)
\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)
\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)