Tìm x : 3x ( 12x -4 ) - 2x ( 18 x +3 ) = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
a) x(x+1)+3(x+1)=0
⇌ (x+1)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
b)3x(12x-4)-2x(18x+3)=0
⇒36x2-12x-36x2+6x=0
⇒ -6x = 0
⇒ x=0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)
\(=3x^2+15x-3x^2+3x-18x+18+8\)
\(=18+8\)
\(=26\)
\(\Rightarrow\) Biểu thức không phụ thuộc vào biến
đpcm
a) 3x( x + 5 ) - ( 3x + 18 )( x - 1 ) + 8
= 3x2 + 15x - ( 3x2 + 15x - 18 ) + 8
= 3x2 + 15x - 3x2 - 15x + 18 + 8
= 26 ( đpcm )
b) ( 2x + 6 )( 4x2 - 12x + 36 ) - 8x3 + 5
= [ ( 2x )3 + 63 ] - 8x3 + 5
= 8x3 + 216 - 8x3 + 5
= 221
a.
\(10-2\left(4-3x\right)=-4\)
\(\Leftrightarrow2\left(4-3x\right)=10+4\)
\(\Leftrightarrow2\left(4-3x\right)=14\)
\(\Leftrightarrow4-3x=7\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
b.
\(-12+3\left(-x+7\right)=-18\)
\(\Leftrightarrow3\left(-x+7\right)=-18+12=-6\)
\(\Leftrightarrow-x+7=-6:3=-2\)
\(\Leftrightarrow x=9\)
c.
\(-45:5.\left(-3-2x\right)=3\)
\(\Leftrightarrow-9.\left(-3-2x\right)=3\)
\(\Leftrightarrow-3-2x=-\dfrac{1}{3}\)
\(\Leftrightarrow2x=-\dfrac{8}{3}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\notin Z\left(loại\right)\)
Câu này em ghi sai đề?
d.
\(3x-28=x+36\)
\(\Leftrightarrow2x=28+36\)
\(\Leftrightarrow2x=64\)
\(\Leftrightarrow x=32\)
e.
\(\left(-12\right)^2.x=56+10.13x\)
\(\Leftrightarrow144x=56+130x\)
\(\Leftrightarrow144x-130x=56\)
\(\Leftrightarrow14x=56\)
\(\Leftrightarrow x=4\)
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
(2x) : 5 = 12
=> 2x = 60
=> x = 30
12.(3x) = 36
=> 3x = 3
=> x = 1
Câu 1:
\(x^4+5x^3-12x^2+5x+1=x^4+7x^3+x^2-2x^3-14x^2-x+x^2+7x+1\)
\(=\left(x^4+7x^3+x^2\right)-\left(2x^3+14x^2+x\right)+\left(x^2+7x+1\right)\)
\(=x^2\left(x^2+7x+1\right)-2x\left(x^2+7x+1\right)+\left(x^2+7x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+7x+1\right)\)
\(=\left(x-1\right)^2\left(x^2+7x+1\right)\)
Câu 2:
\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=x^4-24x^3+203x^2-720x+900-24x^2\)
\(=x^4-24x^3+179x^2-720x+900\)
\(=\left(x^4-7x^3+30x^2\right)-\left(17x^3-119x^2+510x\right)+\left(30x^2-210x+900\right)\)
\(=x^2\left(x^2-7x+30\right)-17x\left(x^2-7x+30\right)+30\left(x^2-7x+30\right)\)
\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)
\(=\left(x^2-2x-15x+30\right)\left(x^2-7x+30\right)\)
\(=\left[x\left(x-2\right)-15\left(x-2\right)\right]\left(x^2-7x+30\right)\)
\(=\left(x-15\right)\left(x-2\right)\left(x^2-7x+30\right)\)
Câu 3:
\(2x^3+11x^2+3x-36=\left(2x^3+14x^2+24x\right)-\left(3x^2+21x+36\right)\)
\(=2x\left(x^2+7x+12\right)-3\left(x^2+7x+12\right)\)
\(=\left(2x-3\right)\left(x^2+7x+12\right)\)
\(=\left(2x-3\right)\left(x^2+3x+4x+12\right)\)
\(=\left(2x-3\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)
\(=\left(2x-3\right)\left(x+3\right)\left(x+4\right)\)
\(3x\left(12x-4\right)-2x\left(18x+3\right)=36\Leftrightarrow36x^2-12x-36x^2-6x=36\)
\(\Leftrightarrow-18x=36\Leftrightarrow x=\dfrac{36}{-18}=-2\) vậy \(x=-2\)
\(3x\left(12x-4\right)-2x\left(18x+3\right)=36\)
\(\Leftrightarrow36x^2-12x-36x^2-6x=36\)
\(\Leftrightarrow-18x=36\)
\(\Leftrightarrow x=-2\)