K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a/ Đặt A = 3(2x+3)(3x-5)

\(A=3\left(2x+3\right)\left(3x-5\right)=\left(6x+9\right)\left(3x-5\right)\)

Để A < 0 thì (6x+9) và (3x-5) trái dấu nhau

\(\Leftrightarrow\left\{{}\begin{matrix}6x+9>0\\3x-5< 0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}6x+9< 0\\3x-5>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{5}{3}\end{matrix}\right.\) => \(-\dfrac{3}{2}< x< \dfrac{5}{3}\)hoặc \(\left\{{}\begin{matrix}x< -\dfrac{3}{2}\\x>\dfrac{5}{3}\end{matrix}\right.\) (vô lí)

Vậy -3/2 < x < 5/3

b/ Đặt B = 5(3y+1)(4y-3)

Có: \(B=5\left(3y+1\right)\left(4y-3\right)=\left(15y+5\right)\left(4y-3\right)\)

Để B > 0 thì (15y+5) và (4y-3) cùng dấu

\(\Leftrightarrow\left\{{}\begin{matrix}15y+5>0\\4y-3>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}15y+5< 0\\4y-3< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y>\dfrac{-1}{3}\\y>\dfrac{3}{4}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y< \dfrac{-1}{3}\\y< \dfrac{3}{4}\end{matrix}\right.\)

<=> \(y>\dfrac{3}{4}\) hoặc \(y< -\dfrac{1}{3}\)

Vậy................

17 tháng 8 2017

tìm x để biểu thức đó dương hay là tìm nghiệm?

19 tháng 2 2016

a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên

và x2 luôn tự nhiên => 5x âm

=>  GTTĐ của x2 < GTTĐ của 5x

=> x < 5

=> x thuộc {4; 3; 2; 1;....}

Vậy....

15 tháng 7 2016

câu hỏi này tôi xem xét lại sau

16 tháng 7 2018

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

16 tháng 7 2018

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.