K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

* \(x^2-8x+12=0\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\) vậy \(x=2;x=6\)

* \(x^2+5x-14=0\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\) vậy \(x=-7;x=2\)

* \(16x^2-81=0\Leftrightarrow16\left(x^2-\dfrac{81}{16}\right)=0\Leftrightarrow x^2-\dfrac{81}{16}=0\)

\(\Leftrightarrow x^2=\dfrac{81}{16}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\) vậy \(x=\dfrac{9}{4};x=\dfrac{-9}{4}\)

17 tháng 8 2017

+ \(x^2-8x+12=0\)

\(\Rightarrow\left(x^2-2.4x+16\right)-4=0\)

\(\Rightarrow\left(x-4\right)^2-4=0\)

\(\Rightarrow\left(x-4\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

+ \(16x^2-81=0\)

\(\Rightarrow16x^2-9^2=0\)

\(\Rightarrow16x^2=9^2\)

\(\Rightarrow x^2=\dfrac{81}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)

 

7 tháng 6 2021

`a)16x^2-24x+9=25`

`<=>(4x-3)^2=25`

`+)4x-3=5`

`<=>4x=8<=>x=2`

`+)4x-3=-5`

`<=>4x=-2`

`<=>x=-1/2`

`b)x^2+10x+9=0`

`<=>x^2+x+9x+9=0`

`<=>x(x+1)+9(x+1)=0`

`<=>(x+1)(x+9)=0`

`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2+2x-6x-12=0`

`<=>x(x+2)-6(x+2)=0`

`<=>(x+2)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

7 tháng 6 2021

`d)x^2-5x-6=0`

`<=>x^2+x-6x-6=0`

`<=>x(x+1)-6(x+1)=0`

`<=>(x+1)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

`e)4x^2-3x-1=0`

`<=>4x^2-4x+x-1=0`

`<=>4x(x-1)+(x-1)=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\) 

`f)x^4+4x^2-5=0`

`<=>x^4-x^2+5x^2-5=0`

`<=>x^2(x^2-1)+5(x^2-1)=0`

`<=>(x^2-1)(x^2+5)=0`

Vì `x^2+5>=5>0`

`=>x^2-1=0<=>x^2=1`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

a: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

23 tháng 10 2021

\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

24 tháng 4 2017

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
a. $(x^2-9)(5x+15)=0$

$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$

$\Rightarrow x^2=9=3^2=(-3)^2$

$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$

$\Rightarrow x=-3$
b.

$x^2-8x=0$
$\Rightarrow x(x-8)=0$

$\Rightarrow x=0$ hoặc $x-8=0$

$\Rightarrow x=0$ hoặc $x=8$

c. 

$5+12(x-1)^2=53$

$12(x-1)^2=53-5=48$

$(x-1)^2=48:12=4=2^2=(-2)^2$

$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$

d.

$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$

$\Rightarrow x=11$ hoặc $x=-1$

e.

$(3x-5)^3=64=4^3$

$\Rightarrow 3x-5=4$

$\Rightarrow 3x=9$

$\Rightarrow x=3$

f.

$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$

$2^{4x}(1+8)=144$

$2^{4x}.9=144$

$2^{4x}=144:9=16=2^4$

$\Rightarrow 4x=4\Rightarrow x=1$

3 tháng 7 2021

\(a,25x^2-1=15\)\(< =>x^2=\dfrac{16}{25}< =>x=\pm\dfrac{4}{5}\)

\(b,\left(x-4\right)^2-\left(5x+2\right)^2=0\)\(< =>\left(-4x-6\right)\left(6x-2\right)=0\)

\(< =>\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(c,\left(x-1\right)\left(x-9\right)=0< =>\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

2 tháng 10 2021

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bài 2: 

a: Ta có: \(x^2+12x+36=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(16x^2-8x+1=0\)

\(\Leftrightarrow4x-1=0\)

hay \(x=\dfrac{1}{4}\)

Bài 1: 

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)

\(=\left(x+2y+x-2y\right)^2\)

\(=4x^2\)