K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

* \(x^2-8x+12=0\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\) vậy \(x=2;x=6\)

* \(x^2+5x-14=0\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\) vậy \(x=-7;x=2\)

* \(16x^2-81=0\Leftrightarrow16\left(x^2-\dfrac{81}{16}\right)=0\Leftrightarrow x^2-\dfrac{81}{16}=0\)

\(\Leftrightarrow x^2=\dfrac{81}{16}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\) vậy \(x=\dfrac{9}{4};x=\dfrac{-9}{4}\)

17 tháng 8 2017

+ \(x^2-8x+12=0\)

\(\Rightarrow\left(x^2-2.4x+16\right)-4=0\)

\(\Rightarrow\left(x-4\right)^2-4=0\)

\(\Rightarrow\left(x-4\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

+ \(16x^2-81=0\)

\(\Rightarrow16x^2-9^2=0\)

\(\Rightarrow16x^2=9^2\)

\(\Rightarrow x^2=\dfrac{81}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)

 

7 tháng 6 2021

`a)16x^2-24x+9=25`

`<=>(4x-3)^2=25`

`+)4x-3=5`

`<=>4x=8<=>x=2`

`+)4x-3=-5`

`<=>4x=-2`

`<=>x=-1/2`

`b)x^2+10x+9=0`

`<=>x^2+x+9x+9=0`

`<=>x(x+1)+9(x+1)=0`

`<=>(x+1)(x+9)=0`

`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2+2x-6x-12=0`

`<=>x(x+2)-6(x+2)=0`

`<=>(x+2)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

7 tháng 6 2021

`d)x^2-5x-6=0`

`<=>x^2+x-6x-6=0`

`<=>x(x+1)-6(x+1)=0`

`<=>(x+1)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

`e)4x^2-3x-1=0`

`<=>4x^2-4x+x-1=0`

`<=>4x(x-1)+(x-1)=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\) 

`f)x^4+4x^2-5=0`

`<=>x^4-x^2+5x^2-5=0`

`<=>x^2(x^2-1)+5(x^2-1)=0`

`<=>(x^2-1)(x^2+5)=0`

Vì `x^2+5>=5>0`

`=>x^2-1=0<=>x^2=1`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

a: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

23 tháng 10 2021

\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

24 tháng 4 2017

3 tháng 7 2021

\(a,25x^2-1=15\)\(< =>x^2=\dfrac{16}{25}< =>x=\pm\dfrac{4}{5}\)

\(b,\left(x-4\right)^2-\left(5x+2\right)^2=0\)\(< =>\left(-4x-6\right)\left(6x-2\right)=0\)

\(< =>\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(c,\left(x-1\right)\left(x-9\right)=0< =>\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

2 tháng 10 2021

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bài 2: 

a: Ta có: \(x^2+12x+36=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(16x^2-8x+1=0\)

\(\Leftrightarrow4x-1=0\)

hay \(x=\dfrac{1}{4}\)

Bài 1: 

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)

\(=\left(x+2y+x-2y\right)^2\)

\(=4x^2\)

14 tháng 8 2019

5 tháng 4 2022

`Answer:`

Bài 1:

a) \(7+2x=22-3x\)

\(\Leftrightarrow2x+3x=22-7\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

b) \(8x-3=5x+12\)

\(\Leftrightarrow8x-5x=12+3\)

\(\Leftrightarrow3x=15\)

\(\Leftrightarrow x=5\)

c) \(x-12+4x=25+2x-1\)

\(\Leftrightarrow x-12+4x-25-2x+1=0\)

\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)

\(\Leftrightarrow3x-36=0\)

\(\Leftrightarrow x=12\)

d) \(x+2x+3x-19=3x+5\)

\(\Leftrightarrow6x-19=3x+5\)

\(\Leftrightarrow6x-3x=5+19\)

\(\Leftrightarrow3x=24\)

\(\Leftrightarrow x=8\)

Bài 2:

a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)

b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)

\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)

d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)

\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow x^2-5x-2x+10=0\)

\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)