Cho a+b+c=0 và \(a^2+b^2+c^2=14\)
Tính giá trị của biểu thức : \(A=a^4+b^4+c^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
Ta có a2 + b2 + c2 = 14
=> (a2 + b2 + c2)2 = 196
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 196
=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196
Lại có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> 2(ab + bc + ca) = -14
=> ab + bc + ca = -7
=> (ab + bc + ca)2 = 49
=> a2b2 + b2c2 + c2a2 + 2ab2c + 2a2bc + 2abc2 = 49
=> a2b2 + b2c2 + c2a2 + 2abc(a + b + c) = 49
=> a2b2 + b2c2 + c2a2 = 49
Khi đó a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196
<=> a4 + b4 + c4 + 2.49 = 196
=> a4 + b4 + c4 + 98 = 196
=> a4 + b4 + c4 = 98
Vậy N = 98
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-7\Rightarrow\left(ab+bc+ac\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc0=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+0=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Xét \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)
\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)\(\Leftrightarrow a^4+b^4+c^4+98=196\)
\(\Leftrightarrow a^4+b^4+c^4=98\)
lại nhầm lần này đúng
(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=2+2(ac+bc+ab)
=>ac+bc+ab=2:2=-1
=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>1=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
22=a4+b4+c4+2.1
4=a4+b4+c4+2
=>a4+b4+c4=2
Ta co :
\(a^2+b^2+c^2=14\)
Binh phuong hai ve ta co :
\(\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)c^2+c^4=196\)
\(a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=196\)
\(a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=196\)(1)
Lai co : \(a+b+c=0\)
binh phuong hai ve co:
\(a^2+2ab+b^2+2ac+2bc+c^2=0\)
\(a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)
\(14+2\left(ab+ac+bc\right)=0\)
\(\left(ab+ac+bc\right)=-7\)
\(\left(ab+ac+bc\right)^2=49\)
\(a^2b^2+b^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=49\)
\(a^2b^2+b^2c^2+b^2c^2+2abc\left(a+b+c\right)=49\)
\(a^2b^2+b^2c^2+b^2c^2=49\)(2)
Thay (2) vao (1),co
\(a^4+b^4+c^4+2.49 =196\)
\(a^4+b^4+c^4=196-98=98\)
ta có : \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow14+2\left(ab+bc+ca\right)=0\) \(\left(vìa^2+b^2+c^2=14\right)\)
\(\Rightarrow2\left(ab+bc+ca\right)=-14\)
ta có : \(\left(a^2+b^2+c^2\right)=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\) (1)
ta có : \(\left(2ab+2bc+2ca\right)=-14\Leftrightarrow\left(2ab+2bc+2ca\right)^2=196\)
\(\Leftrightarrow4a^2b^2+4b^2c^2+4c^2a^2+8ab^2c+8bc^2a+8ca^2b=196\)
\(\Leftrightarrow4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)=196\)
\(\Leftrightarrow4\left(a^2b^2+b^2c^2+c^2a^2\right)=196\) \(\left(vìa+b+c=0\right)\)
\(\Rightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)=\dfrac{196}{2}=98\) (2)
từ (1) và (2) ta có : \(a^4+b^4+c^2+2\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)=a^4+b^4+c^4=196-98=98\)
vậy \(a^4+b^4+c^4=98\) bởi \(a+b+c=0\) và \(a^2+b^2+c^2=14\)