Tìm min P = x^2 - xy + y^2 / x^2+xy+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
A= \(\frac{1}{\left(x+y\right)\left(x^2+y^2-xy\right)+xy}+\frac{4x^2y^2+2}{xy}=\)\(\frac{1}{x^2+y^2}+4xy+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\) (1)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};a+b\ge2\sqrt{ab},\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)áp dụng vào trên ta được
(1) \(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4}.\frac{4}{\left(x+y\right)^2}=4+2+\frac{5}{4}.4=11.\)
dấu '=" khi x=y = 1/2
#)Giải :
Ta có : \(x^2+y^2-xy=4\Leftrightarrow x^2+y^2=4+xy\Leftrightarrow3\left(x^2+y^2\right)=8\left(x+y\right)^2\ge8\)
\(\Rightarrow A_{max}=8\)
Dấu''='' xảy ra khi x = y = 2 hoặc x = y = -2
\(A=x^2+xy+y^2-3(x+y)+3\\2A=2x^2+2xy+2y^2-6(x+y)+6\\=(x^2+2xy+y^2)-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)\\=(x+y)^2-4(x+y)+4+(x-1)^2+(y-1)^2\\=(x+y-2)^2+(x-1)^2+(y-1)^2\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\forall x,y\\\left(x-1\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x+y-2\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow2A\ge0\forall x,y\)
\(\Rightarrow A\ge0\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\\y-1=0\end{matrix}\right.\Rightarrow x=y=1\)
Vậy \(Min_A=0\) khi \(x=y=1\).
\(\text{#}Toru\)
\(2A=2x^2+2y^2+2xy-6x-6y+6\)
\(2A=\left(x+y\right)^2-4\left(x+y\right)+4+\left(x-1\right)^2+\left(y-1\right)^2\)
\(2A=\left(x+y-2\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\)
Do \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow2A\ge0\Rightarrow A\ge0\)
Vậy \(A_{min}=0\) khi \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\\y-1=0\end{matrix}\right.\) hay \(\left(x;y\right)=\left(1;1\right)\)
\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)
\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)
\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)
\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)
Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)
=>x=y
x^2+y^2>=2xy
=>\(\dfrac{x^2+y^2}{2xy}>=1\)
Dấu = xảy ra khi x=y
=>S>=6
Dấu = xảy ra khi x=y
usechatgpt init success là gì vậy bạn :))?
\(x^2+y^2-xy=4\) \(\Rightarrow\dfrac{1}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x-y\right)^2=4\)
\(\Rightarrow P=8-\left(x-y\right)^2\le8\)
\(MaxP=8\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x-y=0\end{matrix}\right.\Leftrightarrow x=y=\pm2\)
\(x^2+y^2-xy=\dfrac{3}{2}\left(x^2+y^2\right)-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow4=\dfrac{3}{2}P-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow P=\dfrac{8+\left(x+y\right)^2}{3}\ge\dfrac{8}{3}\)
\(MinP=\dfrac{8}{3}\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{2\sqrt{3}}{3}\\y=\mp\dfrac{2\sqrt{3}}{3}\end{matrix}\right.\)
:v ẹc, vậy thôi khỏi dùng ik, lên đây đăng bài mình giải giúp cho.
a,P=\(x^2-xy+y^2\)
=\(\left(x-y\right)^2\)
Vì \(\left(x-y\right)^2\ge0\)vs mọi x
Vậy Min của P =0
b,P= \(x^2+xy+y^2\)
=\(\left(x+y\right)^2\)
Vì \(\left(x+y\right)^2\ge0\)vs mọi x
Vậy Min của P=0