1.A=x+2/x√x-1+√x+1/x+√x+1-√x+1
2.B=(1/1-√x-1/1+√x)(1-1/√x)
#Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{x\left(1-x\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^2}{1-x}+x\right)\left(\dfrac{1+x^2}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(x-1\right)^2}{x^2+1}:\left[\dfrac{1-x^2+x-x^2}{1-x}\cdot\dfrac{1+x^2-x-x^2}{1+x}\right]\)
\(=\dfrac{x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{\left(1-x\right)\left(1+x\right)}{\left(-2x^2+x+1\right)\left(-x+1\right)}\)
\(=\dfrac{x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-\left(x-1\right)\left(2x^2-x-1\right)}\)
\(=\dfrac{-x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{x+1}{2x^2-2x+x-1}\)
\(=\dfrac{-x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{x+1}{\left(x-1\right)\left(2x+1\right)}\)
\(=\dfrac{-x\left(x-1\right)\left(x+1\right)}{\left(2x+1\right)\left(x^2+1\right)}\)
b: Đề này sai rồi bạn ,lỡ x=2 thì nó nhỏ hơn 0 á bạn
a) \(A=\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(A=\left[\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}\right)^3+1^3}{\sqrt{x}+1}-\sqrt{x}\right]\)
\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right]\)
\(A=\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(A=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)
\(A=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2\)
\(A=\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]^2\)
\(A=\left(x-1\right)^2\)
\(A=x^2+2x+1\)
Ta có
\(\frac{1}{x^2-x+1}-x=1\)
<=>\(\frac{1-x^3+x^2-x}{x^2-x+1}=1\)
<=>\(1-x^3+x^2-x=x^2-x+1\)
<=>\(x^3=0\)
<=>\(x=0\)
Nhớ tick mình nha bạn,cảm ơn nhiều.
Bạn vào biểu tượng \(\Sigma\) để nhập biểu thức cho chính xác nhé
a.\(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^2-1\right)-\left(x^3+1\right)\)
\(=x^3-x-x^3-1\)
\(=-x-1\)
b.\(3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
\(=3x^2\left(x^2-1\right)-\left(x^2-1\right)^3+\left(x^2-1\right)^3\)
\(=3x^2\left(x^2-1\right)+\left(x^2-1\right)^3\)
Chắc là vậy!
a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x.\left(x^2-1^2\right)-\left(x^3+1^3\right)\)
\(=x^3-1x-x^3+1^3\)
\(=-x+1\)