K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a,Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\\\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-5c}{b-5d}\end{matrix}\right.\Rightarrow\dfrac{3a+2c}{3b+2d}=\dfrac{a-5c}{b-5d}\)

Vậy.........(đpcm)

b, Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\end{matrix}\right.\)

Vậy..............(đpcm)

Chúc bạn học tốt!!!

14 tháng 8 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{a-5c}{b-5d}\)

\(\Rightarrow\dfrac{3a-2b}{3b-2c}=\dfrac{a-5c}{b-5d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

28 tháng 7 2023

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)

\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)

b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)

\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)

c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)

28 tháng 7 2023

Cứu mình với mình đang cần gấp!~

 

 

 

 

 

 

 

 

 

 

 

 

 

1 tháng 2 2017

a )\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{2a}{2c}\)

\(\frac{a-b}{c-d}=\frac{2a}{2c}\Rightarrow\frac{a-b}{2a}=\frac{c-d}{2c}\) ( đpcm)

b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) ( đpcm )

5 tháng 12 2023

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

5 tháng 12 2023

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)

 

      

 

7 tháng 12 2015

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

7 tháng 12 2015

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

`#3107.101107`

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Ta có:

\(\dfrac{3b}{a}=\dfrac{3d}{c}\Rightarrow3bc=3da\Rightarrow bc=da\)

Vậy, từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ta có thể suy ra tỉ lệ thức \(\dfrac{3b}{a}=\dfrac{3d}{c}\)

\(\Rightarrow B.\)