Cho \(\bigtriangleup\) ABC cân tại A. Kẻ Mx//AC và cắt AB ở E. Kẻ My// AB, cắt AC tại F. Chứng minh:
a) ME=MF
b) MF=\(\dfrac{1}{2}\)BC
c) AM là đường trung trực của EF.
Hlep me! Mình đang cần vội giúp mk trong thời gian sớm nhất nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABM và tam giác ACM
có : + AB = AC (gt)
+ BM = CM (gt)
+) AM chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc A1 = góc A2
Xét tam giác AEM và tam giác AFM có :
+) góc AME = góc AMF (Vì góc MEA = MFA (= 90o) ; góc A1 = góc A2 => góc MEA - góc A1 = góc MFA - góc A2 => <AME = <AMF)
+ góc A1 = góc A2
+) AM chung
=> Tam giác AEM = Tam giác AFM (g.c.g)
=> ME = MF (cạnh tương ứng)
=> AE = AF
b) Gọi K là giao điểm của AM và EF
Xét tam giác AEK và tam giác AFK có
+) góc A1 = góc A2
+) AF = AE (cmt)
+) AK chung
=> tam giác AEK = tam giác AFK (c.g.c)
=> EK = FK (cạnh tương ứng)
=> góc AKE = góc AKF (góc tương ứng)
Lại có góc AKE + góc AKF = 180 o
=> góc AKE = góc AKF = 90o
mà EK = FK
=> AK là trung trực của EF
mà K \(\in\)AM
=> AM là trung trực của EF
c) Vì tam giác ABM = tam giác ACM (cmt)
=> góc AMB = góc AMC
Mà góc AMB + góc AMC = 180 o
=> góc AMB = góc AMC = 90o
lạ có MC = MB = 1/2BC
=> AM là trung trực của BC (1)
Vì góc AMB = góc AMC = 90o
mà góc AMB + góc BMD = góc AMC + góc CMD (=180o)
=> góc BMD = góc CMD = 90o
lại có BM = CM = 1/2BC
=> MD là trung trực của BC (2)
Từ (1) (2) => A;M;D thẳng hàng
Bạn tham khảo tại đây nhé: Câu hỏi của Min Suga.
Chúc bạn học tốt!
a/ Ta có : \(\begin{cases}ME\text{//}AC\\BM=MC\end{cases}\) => ME là đường trung bình của tam giác ABC
=> AE = EB
Tương tự MF cũng là đường trung bình của tam giác ABC
=> AF = FC
b) Vì \(\begin{cases}AE=EB\\AF=FC\end{cases}\) => EF là đường trung bình của tam giác ABC => EF=1/2BC
c) Ta có : ME = MF = 1/2AB = 1/2AC
AE = AF = 1/2AB = 1/2AC
a/ xét tam giác ABC ta có ME//AC ; M là trung điểm BC
=> E là trung điểm của AB
cmtt F là trung điểm của AC
b/ xét tam giác ABC ta có E, F là trung điểm của AB, AC
=> EF là đường trung bình của tam giác ABC
\(\Rightarrow EF=\frac{BC}{2}\)
c/ cmtt câu b ta được ME=1/2 AC ; MF=1/2 AB
mà AB=AC (tam giác ABC cân tại A)
nên ME=MF
ta có \(\hept{\begin{cases}\widehat{CBA}=\widehat{AEF}\\\widehat{BCA}=\widehat{AFE\:}\end{cases}}\) 2 góc đồng vị, EF//BC
mà \(\widehat{CBA}=\widehat{BAC}\)(tam giác cân)
nên \(\widehat{AEF}=\widehat{AFE\:}\)
=> tam giác AEF cân tại A => AE=AF
m là cái j v bạn
Người ta không nói M là gì bạn ạ, có sai đề ko bạn?