K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

a) 

$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$

Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:

\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$

\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$

Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$

c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.

Ta có:

\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$

Mặt khác:

$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$

$=2\widehat{IDH}+2\widehat{CDI}$

$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$

$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$

$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$

Từ $(1);(2)$ suy ra đpcm.

 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Hình vẽ:

9 tháng 2 2019

giúp mình phần 4 với

24 tháng 2 2020

Ai làm giúp với =((

14 tháng 3 2021

ai đó làm giúp với

 

24 tháng 5 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trong mặt phẳng chứa đường tròn tâm O ngoại tiếp tứ giác ABCD ta kẻ đường kính qua O vuông góc với dây cung AC tại I. Ta có IA = IC và OI // BD. Gọi O’ là tâm mặt cầu đi qua 5 đỉnh của hình chóp. Khi đó điểm O’ phải nằm trên trục d của đường tròn ngoại tiếp tứ giác ABCD. Ta có d ⊥ (ABCD) tại O. Gọi M là trung điểm của cạnh SC. Ta có MI // SA nên MI  ⊥ (ABCD) tại I. Từ M kẻ đường thẳng d’ // OI cắt d tại O’. Vì d′  (SAC) tại M nên ta có O’C = O’S và O’C là bán kính r của mặt cầu ngoại tiếp hình chóp S.ABCD

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

10 tháng 12 2020

1) Xét (O) có 

ΔDAB nội tiếp đường tròn (O)(Vì D,A,B∈(O))

mà AB là đường kính của (O)(gt)

nên ΔDAB vuông tại D(Định lí)

⇒BD⊥AD tại D

hay BD⊥AC

Xét (O) có 

ΔEAB nội tiếp đường tròn(E,A,B∈(O))

mà AB là đường kính(gt)

nên ΔEAB vuông tại E(Định lí)

⇒AE⊥EB tại E

hay AE⊥BC tại E

Xét ΔCAB có 

BD là đường cao ứng với cạnh AC(cmt)

AE là đường cao ứng với cạnh BC(cmt)

BD\(\cap\)AE={H}

Do đó: H là trực tâm của ΔCAB(Tính chất ba đường cao của tam giác)

⇔CH là đường cao ứng với cạnh AB

hay CH⊥AB(đpcm)

a)Nối F với D : E với D ta có:

Xét tam giác FBC ta có 

D là trung điểm BC(1)

Góc BFC=90 (2)

Từ (1)(2)=>FD là trung tuyến của tam giác FBC

=>BD=CD=DF(*)

Chứng minh tương tự tam giác EBC

=>DE=DC=DB(**)

Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)

=>B;F;E;C thuộc đừng tròn

=>D là tâm của đường tròn

B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn 

=>B;H;E;c ko thuộc đừng tròn

6 tháng 8 2017

Đáp án đúng : D