K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

1.

a) \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\le0\)

Nhận xét : Do \(\left(2x-\dfrac{1}{6}\right)^2\ge0\) với \(\forall x\)

\(\left|3y+12\right|\ge0\) với \(\forall y\)

Nên \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\le0\)

\(\Leftrightarrow\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{6}\right)^2=0\\\left|3y+12\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\dfrac{1}{6}=0\\3y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{12}\\y=-4\end{matrix}\right.\)

vậy \(x=\dfrac{1}{12};y=-4\)

tik mik nha !!!

4 tháng 8 2019

Ta có: \(\left(2x-\frac{1}{6}\right)^2\ge0\forall x\)

        \(\left|3y+12\right|\ge0\forall y\)

=> \(\left(2x-\frac{1}{6}\right)^2+\left|3y+12\right|\ge0\forall x;y\)

=> \(\hept{\begin{cases}2x-\frac{1}{6}=0\\3y+12=0\end{cases}}\)

=> \(\hept{\begin{cases}2x=\frac{1}{6}\\3y=-12\end{cases}}\)

=> \(\hept{\begin{cases}x=\frac{1}{12}\\y=-4\end{cases}}\)

         

9 tháng 9 2017

1)

\(A=\dfrac{1}{2}.\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}......\dfrac{4064256}{2015.2017}\\ =\dfrac{1.2.2.3.3.....2016.2016}{2.1.3.2.4.3.5....2015.2017}\\ =\dfrac{\left(2.3.4.....2016\right)}{\left(1.2.3.4....2015\right)}.\dfrac{\left(2.3.4....2016\right)}{\left(2.3.4.5....2017\right)}\\ =2016.\dfrac{1}{2017}=\dfrac{2016}{2017}\)

9 tháng 9 2017

2) a)

Ta có : \(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|\ge0\) \(\forall x,y\)

\(\left(2x-\dfrac{1}{6}\right)^2+\left|3y+12\right|=0\) ( theo đề ra)

\(\)\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{6}\right)^2=0\\\left|3y+12\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{12}\\y=-4\end{matrix}\right.\)

18 tháng 9 2017

4 và 6 đều chẵn nên [2x-5]4 và [3y+1]6 đều \(\ge0\)

=> \(\left[2x-5\right]^4+\left[3y+1\right]^6\le0\)khi 

\(\hept{\begin{cases}\left[2x-5\right]^4=0\\\left[3y+1\right]^6=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{3}\end{cases}}\)

26 tháng 2 2018

=> 2x-1/6 = 0 và 3y+12 = 0

=> x=1/12 và y=-4

Vậy .....................

Tk mk nha

26 tháng 2 2018

Đặt biểu thức trên là A

Ta có :    ( 2x - 1/6 )^2       >=  0 với mọi x 

               / 3y + 12 /         >=  0 với mọi y 

=> A = ( 2x - 1/6 )^2 + / 3y + 12 /          >= 0  với mọi x , y 

Theo đề bài  :                A  =< 0 

             => A = 0 

Dấu " = " xảy ra <=>           ( 2x - 1/6 )^2 = 0 và /3y + 12 / = 0 

<=>          2x - 1/6 = 0  ,    3y + 12 = 0

<=>          2x  = 1/6        ,      3y = -12

<=>            x  =  1/12     ,        y = -4 

Vậy x = 1/12 , y = -4 

Kí hiệu :             >=  :  lớn hơn hoặc bằng  

                         =<   : nhỏ hơn hoặc bằng 

Chúc học giỏi 

10 tháng 8 2017

\(\left(2x-1\right)^4+\left(3y-6\right)^2\le0\)

\(\left\{{}\begin{matrix}\left(2x-1\right)^4\ge0\forall x\\\left(3y-6\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(2x-1\right)^4+\left(3y-6\right)^2\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left(2x-1\right)^4+\left(3y-6\right)^2\ge0\\\left(2x-1\right)^4+\left(3y-6\right)^2\le0\end{matrix}\right.\)

\(\Rightarrow\left(2x-1\right)^4+\left(3y-6\right)^2=0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(2x-1\right)^4=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\\\left(3y-6\right)^2=0\Rightarrow3y=6\Rightarrow y=2\end{matrix}\right.\)

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)