K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Lời giải:
Đặt $x+7=t$ thì:

$P=(x+8)^4+(x+6)^4=(t+1)^4+(t-1)^4=2t^4+12t^2+2\geq 2, \forall t\in\mathbb{R}$

Do đó $P_{\min}=2$.

Giá trị này đạt tại $t=0\Leftrightarrow x+7=0$

$\Leftrightarrow x=-7$

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
Ta có:

$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$

$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$

$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$

$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$

$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$

Vậy $P_{\min}=5$. Giá trị này đạt tại:

$x+y+\frac{1}{2}=x+2=0$

$\Leftrightarrow x=-2; y=\frac{3}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
Ta có:

$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$

$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$

$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$

$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$

$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$

Vậy $P_{\min}=5$. Giá trị này đạt tại:

$x+y+\frac{1}{2}=x+2=0$

$\Leftrightarrow x=-2; y=\frac{3}{2}$

16 tháng 3 2016

giúp mình nha

16 tháng 3 2016

tk minh nnhe !

6 tháng 3 2016

Vì | 2x - 7 | ≥ 0 ∀ x ∈ Z

Để | 2x - 7 | + 5 - 2x min <=> 2x - 7 = 0 => x = 7/2

=> min A = 5 + 2.7/2 = 12

Vậy min A = 12 tại x = 7/2

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Nếu không có thêm điều kiện gì của $x$ thì biểu thức $E$ không có giá trị nhỏ nhất bạn nhé.

2 tháng 8 2016

học cô thủy đúng ko

3 tháng 8 2016

Chắc chắn học cô Thủy Lê Độ

14 tháng 7 2015

De P lon nhat thi 540 : (x-6) lon nhat. De 540:(x-6) lon nhat thi x-6 nho nhat. x-6 nho nhat th x-6=1=>x=1+6=7

De P nho nhat thi 540 :(x-6) nho nhat. De 540 nho nhat thi x-6 lon nhat. de x-6 lon nhat thi x-6=540=>x=546