Gía trị nhỏ nhất của biểu thức
P=4|7-0,35x|+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $x+7=t$ thì:
$P=(x+8)^4+(x+6)^4=(t+1)^4+(t-1)^4=2t^4+12t^2+2\geq 2, \forall t\in\mathbb{R}$
Do đó $P_{\min}=2$.
Giá trị này đạt tại $t=0\Leftrightarrow x+7=0$
$\Leftrightarrow x=-7$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Vì | 2x - 7 | ≥ 0 ∀ x ∈ Z
Để | 2x - 7 | + 5 - 2x min <=> 2x - 7 = 0 => x = 7/2
=> min A = 5 + 2.7/2 = 12
Vậy min A = 12 tại x = 7/2
Nếu không có thêm điều kiện gì của $x$ thì biểu thức $E$ không có giá trị nhỏ nhất bạn nhé.
De P lon nhat thi 540 : (x-6) lon nhat. De 540:(x-6) lon nhat thi x-6 nho nhat. x-6 nho nhat th x-6=1=>x=1+6=7
De P nho nhat thi 540 :(x-6) nho nhat. De 540 nho nhat thi x-6 lon nhat. de x-6 lon nhat thi x-6=540=>x=546