Bài 1 : Cho a > b > 0 và 3a2 + 3b2 = 10ab . Tính P =\(\dfrac{a-b}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Đặt 2a + b = 7k chia hết cho 7 => (2a + b)2 = 49k2 chia hết cho 49
(2a + b)2 = 4a2 + 4ab + b2 chia hết cho 49
4a2 + 4ab + b2 - (3a2 +10ab - 8b2) = a2 - 6ab +9b2 = (a - 3b)2
Ta có 2a + b chia hết cho 7 nên 3(2a + b) = 6a + 3b chia hết cho7
Ta có 6a + 3b + (a - 3b) = 7a chia hết cho 7 mà 6a + 3b chia hết cho 7 => a - 3b chia hết cho 7
a - 3b chia hết cho 7 => (a - 3b)2 chia hết cho 49
=> 4a2 + 4ab + b2 - (3a2 + 10ab - 8b2) chia hết cho 49
mà 4a2 + 4ab + b2 chia hết cho 49 => 3a2 + 10ab - 8b2 chia hết cho 49
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Trường hợp 1: a=3b
\(A=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2}{4}=\dfrac{1}{2}\)
Trường hợp 2: b=3a
\(A=\dfrac{a-b}{a+b}=\dfrac{a-3a}{a+3a}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)+b\left(3b-a\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=\dfrac{1}{3}b\end{matrix}\right.\)
Vì a>b>0 nên a=3b
\(\Rightarrow P=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)