K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

có : A = 4 + 42 + 43 + ...+ 42021

=> 4A = 42 + 43 + 44 +...+ 42022

ta có : 4A-A= ( 42 +43 +44 +...+ 42022 ) -( 4+ 42 +43 +... + 42021)

3A= 42 +43 + 44+...+42022 -4-42 -43 -...- 42021

3A = 42022 -4

3A + 4 = 42022

mà 3A + 4 = 4n => 42022 =4n => n=2022

A = 4 +42+43+....+42021 

=> 4A = 42 + 43 + 44 + .... + 42022 

=> 4A - A = (  42 + 43 + 44 + .... + 42022 ) - ( 4 +42+43+....+42021  )

=>     3A  = 42022 - 4

Theo bài ra ta có 

     3A + 4 = 4n 

=>  42022 - 4 + 4 = 4n

=>          42022    = 4n

=>             n       = 2022

9 tháng 8 2019

Đáp án cần chọn là: D

11 tháng 11 2021

\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)

11 tháng 11 2021

a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)

hay \(x\in\left\{0;1\right\}\)

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

31 tháng 8 2015

\(7^n=79\left(vô\&lí\right)\)

\(10=10^1;100=10^2;1000=10^3;10000=10^4;10000....0=10^n\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=\left(2^3\right)^{100}=8^{100};9^{100}>8^{100}\)

\(3^{200}>2^{300}\)

19 tháng 7 2016

7^n

=7^2

=>n=2

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

3 tháng 8 2018

(42 x 43 + 43 x 57 + 43) - 360 : 4

=(42 x 43 +43 x 57 + 43 x 1) - 360 : 4

= 43 x (42 + 57 + 1) - 360 :4

=43  x 100 - 360 : 4

=4300 - 90

=4210

b 456 : 2 x 18 + 456 :3 -102

=456 x (18:2) + 456 :3 -102

=456 x 9 + 456 : 3 - 102

=5154 +102 - 102 

=5154+0 

=5154

bai 2 :

gọi số cần tìm là ab

ta có : 5ab =26ab

500 +ab =26ab

25ab =500ab

ab=500:25

ab =20