Rút gọn các biểu thức sau
a)
\(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
b) \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(4\sqrt{3}+\sqrt{5}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)
\(\sqrt{\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}+3}=\sqrt{\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}=\sqrt{4-3+3}=2\)
a) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}+\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}\)
b) Ta có: \(\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{19-8\sqrt{3}+3}}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}\)
=4
a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
=2
c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)
j.
\(J=\left[\frac{1}{\sqrt{(\sqrt{5}-\sqrt{2})^2}}-\frac{\sqrt{2}}{\sqrt{2}(\sqrt{5}+\sqrt{2})}+1\right].\frac{1}{(\sqrt{2}+1)^2}\)
\(=\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{(\sqrt{2}+1)^2}\)
\(=[\frac{\sqrt{5}+\sqrt{2}-(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}+1].\frac{1}{(\sqrt{2}+1)^2}=(\frac{2\sqrt{2}}{3}+1).\frac{1}{(\sqrt{2}+1)^2}=\frac{3+2\sqrt{2}}{3}.\frac{1}{3+2\sqrt{2}}=\frac{1}{3}\)
k. Đề sai sai, bạn xem lại
o.
\(O=(4+\sqrt{15})(\sqrt{5}-\sqrt{3}).\sqrt{2}.\sqrt{4-\sqrt{15}}\)
\(=(4+\sqrt{15}(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)
\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
a: \(\sqrt[4]{\left(-\dfrac{4}{5}\right)^4}=\left|-\dfrac{4}{5}\right|=\dfrac{4}{5}\)
b: \(\dfrac{\sqrt{4}}{\sqrt{5}}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
c: \(\left(\sqrt[3]{9}\right)^2=\left(9^{\dfrac{1}{3}}\right)^2=9^{\dfrac{2}{3}}\)
d: \(\sqrt[5]{\sqrt{a}}=\sqrt[5]{a^{\dfrac{1}{2}}}=a^{\dfrac{1}{2}\cdot\dfrac{1}{5}}=a^{\dfrac{1}{10}}\)
e: \(\sqrt[3]{2^6}=\sqrt[3]{\left(2^2\right)^3}=2^2=4\)
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)
\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)
\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)
\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)
\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)
\(=7-\sqrt{21}+\sqrt{21}-3\)
\(=4\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
Mình làm luôn nhé :
\(\sqrt{45-2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5-\sqrt{45+2.2.\sqrt{2}.3\sqrt{5}+8}}\left(\sqrt{3}+\sqrt{5}\right).\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{7+2.\sqrt{7}.\sqrt{3}+3}\) Tới đây dễ rồi , bạn tự nhóm HĐT là ra ::v
a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)
\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)
=7-2
=5
d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)
\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)
\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)
\(=4\sqrt{7}\)
a,A.√2= √(4+2√3)-√(4-2√3)
= √(1+√3)2 -√( √3 -1)2
= 1+√3-√3+1= 2
=> A= 2/√2=√2
B2= (4+√15)2.(4-√15).(√10-√6)2
= (4+√15).1.(16-4√15)
= (4+√15).(4-√15).4
= 4
=> B = √4 = 2
\(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\times\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=2\sqrt{3+\sqrt{5}}\times\sqrt{2}\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\sqrt{6+2\sqrt{5}}\times\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}\times\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\left(\sqrt{5}+1\right)\times\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\left(5-1\right)\)
= 8
~ ~ ~
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=\left(2\sqrt{2}-\sqrt{5}\right)-\left(3\sqrt{5}+2\sqrt{2}\right)\)
\(=-4\sqrt{5}\)
a. \(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\left(\sqrt{10}-\sqrt{2}\right)=\left[2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\right]\left(\sqrt{10}-\sqrt{2}\right)=\left(2\sqrt{4+\sqrt{5}-1}\right)\left(\sqrt{10}-\sqrt{2}\right)=\left(2\sqrt{3+\sqrt{5}}\right)\left(\sqrt{10}-\sqrt{2}\right)=\left[2\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}\right]\left(\sqrt{10}-\sqrt{2}\right)=\left[2\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)\right]\left(\sqrt{10}-\sqrt{2}\right)=\left(\sqrt{10}+\sqrt{2}\right)\left(\sqrt{10}-\sqrt{2}\right)=10-2=8\)
b. \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}=-4\sqrt{5}\)