1, Cho hình thang ABCD (AB // CD) có AB < CD, AD = BC = AB, \(\widehat{BDC}\) = 30 độ. Tính các góc của hình thang.
2, Cho hình thang ABCD ( AB // CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD+ BC = DC.
3, Cho hình thang ABCD ( AB//CD)
a, Chứng minh rằng nếu hai tia phân giác của 2 góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b, Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.
4, Cho hình thang ABCD có \(\widehat{A}\) = \(\widehat{B}\) = 90 độ và BC = AB = \(\dfrac{AD}{2}\) . Lấy điểm M thuộc đáy nhỏ BC . Kẻ Mx \(\perp\) MA , Mx cắt CD tại N. Chứng minh rằng tam giác AMN vuông cân.