Bài 1 : Tìm x,y biết: a. x+y=-15 và x.y = 36
b. x^2 + y^2 = 85 và x.y=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x.y=-5\)
\(\Leftrightarrow x.y=-5=-1.5=1.\left(-5\right)=5.\left(-1\right)=-5.1\)
th1\(\orbr{\begin{cases}x=-1\\y=5\end{cases}}\)
th2\(\orbr{\begin{cases}x=1\\y=-5\end{cases}}\)
th3\(\orbr{\begin{cases}x=5\\y=-1\end{cases}}\)
th4\(\orbr{\begin{cases}x=-5\\y=1\end{cases}}\)
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
x.y=36 khi đó chỉ có x=6 và y=6
mà x+y=9 =>x=6 y=6(k thỏa mãm)
a) \(2xy+2x-y=8\)
\(\Rightarrow\ 2x\left(y+1\right)-\left(y+1\right)=7\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=7\)
\(\Rightarrow\left[\begin{matrix}\begin{cases}2x-1=-7\\y+1=-1\end{cases}\\\begin{cases}2x-1=-1\\y+1=-7\end{cases}\end{matrix}\right.\left[\begin{matrix}\begin{cases}2x-1=7\\y+1=1\end{cases}\\\begin{cases}2x-1=1\\y+1=7\end{cases}\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=4\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=1\\y=6\end{cases}\\\left[\begin{matrix}\begin{cases}x=-3\\y=-2\end{cases}\\\begin{cases}x=0\\y=-8\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
c)\(x^2+xy+x+y=2\)
\(\Leftrightarrow x\left(x+1\right)+y\left(x+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(x+1\right)=2\)
\(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x+y=2\\x+1=1\end{cases}\\\begin{cases}x+y=1\\x+1=2\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x+y=-2\\x+1=-1\end{cases}\\\begin{cases}x+y=-1\\x+1=-2\end{cases}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=0\\y=2\end{cases}\\\begin{cases}x=1\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=-2\\y=0\end{cases}\\\begin{cases}x=-3\\y=2\end{cases}\end{matrix}\right.\end{matrix}\right.\)
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
\(x.y+x+y=36\)
\(x\left(y+1\right)+y=36\)
\(x\left(y+1\right)+\left(y+1\right)=36+1\)
\(\left(y+1\right)\left(x+1\right)=37\)
\(\left(y+1\right)\left(x+1\right)\) có 4 cặp: \(y+1=1;x+1=37\)
\(y+1=37;x+1=1\)
\(y+1=-1;x+1=-37\)
\(y+1=-37;x+1=-1\)
\(x;y\) có 4 cặp: \(y=0;x=36\)
\(y=36;x=0\)
\(y=-2;x=-38\)
\(y=-38;x=-2\)
1a) x.y = -15 = (-3).5 = (-5).3 = (-1).15 = (-15).1
Vậy x = { -3;5;-5;3;-1;15;-15;1}
Với y tương ứng = { 5;-3;3;-5;15;-1;1;-15}
b) x.y = -13 = (-1).13 = (-13).1
Vậy x = { -1;13;-13;1}
Với y tương ứng = { 13;-1;1;-13}
c) x.y = 85 = 1.85 = 85.1 = 5.17 = 17.5
Vậy x = {1;85;85;1;5;17;17;5}
Với y tương ứng = { 85;1;1;85;17;5;5;17}
2;3: Tự làm
a) Theo đề : x.y=36=> x=36/y
=> 36/y + y=-15
=> y=-12 => x=-3
b)tương tự