K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

Câu a :

\(x^2+6x+9=\left(x+3\right)^2\)

Câu b :

\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)

Câu c :

\(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\) \(=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+\dfrac{1}{2}.2x+\left(\dfrac{1}{2}\right)^2\right]\)

Cau d :

\(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}\right)^2-\left(8y\right)^2=\left(\dfrac{1}{5}+8\right)\left(\dfrac{1}{5}-8\right)\)

30 tháng 7 2017

mình thấy hơi kỳ kỳ ấy nhỉ

16 tháng 10 2019

a,a) ( x2- 6x+ 9)2 - 15 (x2- 6x + 10) = 1

Đặt (x2-6x+9)=a\(\left(a\ge0\right)\)Ta có:

a2-15(a+1)=1

<=> a2-15a-15-1=0

<=>a2-15a-16=0

<=>a2-16a+a-16=0

<=>a(a-16)+(a-16)=0

<=>(a-16)(a+1)=0\(\Rightarrow\orbr{\begin{cases}a-16=0\\a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=16\\a=-1\end{cases}}}\)

Vậy...

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

23 tháng 6 2019

a/ \(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=\left|x-3\right|-x-3\)

b/ \(A=1\Leftrightarrow\left|x-3\right|-x-3=1\)

a) \(\frac{4x+3}{6x-4}+\frac{5x-9}{6x-4}\)

\(=\frac{4x+3+5x-9}{2\left(3x-2\right)}=\frac{9x-6}{2\left(3x-2\right)}\)

\(=\frac{3\left(3x-2\right)}{2\left(3x-2\right)}=\frac{3}{2}\)

b) \(\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{x^2-1}\)

\(=\frac{2\left(x+1\right)+3\left(x-1\right)-4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x-1}\)

28 tháng 12 2019

a) \(\frac{4x+3}{6x-4}+\frac{5x-9}{6x-4}\)

\(=\frac{4x+3+5x-9}{6x-4}\)

\(=\frac{9x-6}{6x-4}\)

\(=\frac{3.\left(3x-2\right)}{2.\left(3x-2\right)}\)

\(=\frac{3}{2}.\)

b) \(\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{x^2-1}\)

\(=\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{3.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{4x-2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2x+2}{\left(x-1\right).\left(x+1\right)}+\frac{3x-3}{\left(x-1\right).\left(x+1\right)}+\frac{-\left(4x-2\right)}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2x+2+3x-3-4x+2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{x+1}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{1}{x-1}.\)

Chúc bạn học tốt!

8 tháng 7 2016

\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)

\(=\frac{1}{\left(x+3\right)^2}+-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)

\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)

\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)

\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)