Câu1: cho hình lập phương ABCD A'B'C'D'. Gọi M, N lần lượt là trung điểm A, A' và A', B'. Gọi E là một điểm thuộc B' C' sao cho B'E< EC'. Xác định giao tuyến mặt phẳng MNE với các mặt hình lập phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nguyễn văn tuấn trả lời câu hỏi thứ nhất hình như sai rồi
bài 1 : 4 lần theo mình nghĩ là như vậy
bài 2 : hình như 4 lần luôn thì phải
Dễ thấy (CMN) là (ABC'D')(Vì CM,MN,CN nằm trong mp đó)
thiết diện có S=\(a^2\sqrt{2}\)
Gọi M là trung điểm của BD, là trung điểm của A’B.
Suy ra tâm O của tam giác BDA’ là giao của DN và A’M
Phương án D đúng vì BD ⊥ (AMA') bởi BD ⊥ AM và BD ⊥ A’M ⇒ BD ⊥ AO
BA’ ⊥ (AND) do BA’ ⊥ DN và A’B ⊥ AN ⇒ A’B ⊥ AO
AO ⊥ (A’BD) ⇒ O là hình chiếu của A trên (A’BD).
Đáp án D
\(A'C'=\sqrt{a^2+a^2}=a\sqrt{2}\)
=>\(A'C=\sqrt{\left(a\sqrt{2}\right)^2+\left(a\sqrt{3}\right)^2}=a\sqrt{5}\)
a ) Diện tích xung quanh là :
3 x 3 x 4 = 36 (cm2)
b) Diện tích toàn phần là :
3 x 3 x 6 = 54 (cm2)
Đáp số : a )...
b ) .......
a,tính diện tích xung quanh hình lập phương đó là:
3x 3 x 4 =36 ( cm2)
b, tính diện tích toàn phần hình lập phương đó là:
3x3 x 6 =54 ( cm2)
Phương pháp:
Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng lần lượt thuộc hai mặt phẳng và vuông góc với giao tuyến.
Cách giải:
Ta có
Do ABB 'A ' là hình vuông
Chọn A.
a) Bốn tam giác OAA', OBB', OCC', ODD' là các tam giác vuông bằng nhau nên suy ra OA' = OB' = OC' = OD'.
Hình chóp O.A'B'C'D' là hình chóp đều vì có các mặt bên là tam giác cân và đáy là đa giác đều.
b) Thể tích của của hình chóp O.A'B'C'D' là:
Thể tích hình lập phương:
Vậy V ' V = 1 3