K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

\(x=0\)

28 tháng 7 2017

\(\sqrt{x2+x+25}\) + \(\sqrt{x2+x+16}\)=9

=\(\sqrt{ }\)(x+5)2 +\(\sqrt{ }\)(x+4)2=9

= /x+5/ +/x+4/ =9

= x+5+x+4 =9

= 2x+9=9

= 2x=9-9

=2x=0

x= 0:2

x=0

vậy x = 0

28 tháng 7 2017

Đặt \(\hept{\begin{cases}\sqrt{x^2+x+25}=a\ge0\\\sqrt{x^2+x+16}=b\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b=9\\a^2-b^2=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=9\\\left(a+b\right)\left(a-b\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=9\\a-b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=5\\b=4\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+25}=5\\\sqrt{x^2+x+16}=4\end{cases}}\)

\(\Rightarrow x^2+x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

28 tháng 7 2017

Đặt  \(t=x^2+x+16>0\)

pt trên đc viết lại thành

\(\sqrt{t+9}+\sqrt{t}=9\)

\(\Leftrightarrow t+9+t+2\sqrt{t\left(t+9\right)}=81\)

\(\Leftrightarrow2\sqrt{t\left(t+9\right)}=72-t\)

\(\Leftrightarrow\hept{\begin{cases}72-t>0\\4t\left(t+9\right)=\left(72-t\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}t< 72\\3t^2+180t-5184=0\end{cases}}\)

\(\Leftrightarrow t=-30+6\sqrt{73}\) (vì t > 0)

Thử lại thấy ko thỏa mãn

Vậy pt vô nghiệm.

24 tháng 7 2017

=>\(\sqrt{\left(x+3\right)^2}\)\(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x

=> x + 3 + x + 4 + x + 5 = 9x

=> - 6x = - 12

=> x=2

25 tháng 7 2017

Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a ) 

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

16 tháng 7 2016

Điều kiện: mọi \(x\in R\)

Ta có \(\sqrt{x^2+x+25}=\sqrt{x^2+x+9}+2\)

\(\Leftrightarrow x^2+x+25=x^2+x+9+4.\sqrt{x^2+x+9}+4\)

\(\Leftrightarrow\sqrt{x^2+x+9}=3\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

20 tháng 10 2017

X=0,894427185

20 tháng 10 2017

tớ bấm máy tính mà

a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)

=>\(10\cdot\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7

b: =>|x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5 hoặcx=1

14 tháng 7 2021

\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)

\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)

\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)

\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)

14 tháng 7 2021

cảm ơn nhaa<33

19 tháng 5 2018

để đâu bn