K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

gọi 3 số đó là a,b,c

a+b+c=100

theo bdt cosi: a+b+c>=\(3\sqrt[3]{abc}\)

\(\Leftrightarrow100\ge3\sqrt[3]{abc}\Leftrightarrow\frac{1000000}{27}\ge abc\)

vậy abc đạt gtln là 1000000/27 hay tích 3 số đó có GTLN là 1000000/27

24 tháng 8 2021
An U buffo x cm id so go

#include <bits/stdc++.h>

using namespace std;

long long a[1000],i,n,ln,t,k,nn;

int main()

{

cin>>n;

for (i=1; i<=n; i++) cin>>a[i];

ln=LLONG_MIN;

for (i=1; i<=n; i++) ln=max(ln,a[i]);

cout<<"So lon nhat la: "<<ln<<endl;

cout<<"VI tri la: ";

for (i=1; i<=n; i++) if (ln==a[i]) cout<<i<<" ";

cout<<endl;

t=0;

for (i=1; i<=n; i++)

if (a[i]>0) t+=a[i];

cout<<"Tong cac so duong la: "<<t<<endl;

cin>>k;

for (i=1; i<=n; i++)

if (a[i]%k==0) cout<<a[i]<<" ";

cout<<endl;

nn=LLONG_MAX;

for (i=1; i<=n; i++)

nn=min(nn,a[i]);

cout<<nn;

return 0;

}

24 tháng 4 2017

Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt

Ta có a.b.c = a+b+c

Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.

Tìm các số nguyên dương:

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.

Kết luận: Số cần tìm là 1; 2; 3 .

21 tháng 6 2017

Ra 5,4,1

Mình chỉ ra kết quả thôi, còn trình bày lằng nhằng lắm

18 tháng 2 2021

1;2;3 đó bạn

mink nha

24 tháng 8 2021

6,4,1 các cậu ạ mik cũng ko chắc nữa

23 tháng 3 2016

3 số đó là 1,2,3

Ủng hộ mk nha

17 tháng 9 2018

Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)\(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.

Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.

Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.

như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1

18 tháng 9 2018
Chào bạn
10 tháng 3 2020

Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có a + b + c = abc/2
Giả sử a≤b≤ca≤b≤c thì
Do đó \(\frac{abc}{2}\le3c\) hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại)
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn)
                           a =2, b = 2, c = 4 (Thỏa mãn)
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn)
5, ab = 2..........................................( Không thỏa mãn)
6, ab = 1 ..........................................( Không thỏa mãn
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8

học tốt

16 tháng 8 2021

1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.

16 tháng 8 2021

Ta có: Gỉa sử 3 số nguyên tố đó đều là lẻ thì lẻ+lẻ+lẻ=lẻ

⇒Có một số nguyên tố chẵn

Chỉ 2 là số nguyên tố chẵn duy nhất

⇒Số nhỏ nhất trong ba số nguyên tố là 2

Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.

Ta có a. b. c= a + b + c.

Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .

Tìm các số nguyên dương:

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).

Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.

Kết luận: Số cần tìm là 1; 2; 3.