K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt

Ta có a.b.c = a+b+c

Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.

Tìm các số nguyên dương:

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.

Kết luận: Số cần tìm là 1; 2; 3 .

21 tháng 6 2017

Ra 5,4,1

Mình chỉ ra kết quả thôi, còn trình bày lằng nhằng lắm