b1:Cho A= 1+2+2^2+2^3+...+2^2009 và B=2^2010 . So sánh A và B
Bài 2:tính
P=1/2+1/2^2+1/2^3+....+1/2^19+1/2^20
giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1+ 2+ 2^2 + ..... + 2^ 2009
2A = 2 + 2^2 + .... + 2^2010
2A - A = 2^2010 - 1 = A
B = 2^ 2010 - 1
=> A = B
a)
A = 20 + 21 + 22 + ..... + 22010
2A = 21 + 22 + ..... + 22010 + 22011
2A - A = (21 + 22 + ..... + 22010 + 22011) - (20 + 21 + 22 + ..... + 22010)
A = 22011 - 1
Vì 22011 > 22010
=> A > B
Gọi 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010 là a
Ta có:
A= 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010
2A=21+22+23+...+22010+22011
2A-A=22011-1
A=22011-1
=>2^0 + 2^1 + 2^2 + 2^3 +...+2^2010=B
a) Xin lỗi bạn nhé !!!
b) 2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
=> 2010^2 > 2009 . 2011
c)
\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\)
Nên \(3^{450}>5^{300}\)
a) A = 2 + 22 + ... + 22010
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
= 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)
= 2.3 + 23.3 + ... + 22009.3 chia hết cho 3
A = 2 + 22 + ... + 22010
= ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
= 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)
= 2.7 + 24.7 + ... + 22008.7 chia hết cho 7
b) Xét A = 2009.2011
= (2010-1) . (2010+1)
= 2010.2010 + 1.2010 - 1.2010 - 1.1
= 2010.2010 - 1
B = A - 1
Vậy B < A
c) Ta có : 3450 = 35.90 = 1590
5300 = 53.100 = 15100
Vì 1590 < 15100 nên 3450 < 5300 hay A < B
a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)
=> 2A = 2 + 22 + 23 + ... + 22009 (2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)
A = 22009 - 1
Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)
=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)
=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)
=> A - 1 < B - 1
=> A < B
a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Đặt \(Q=1+2+2^2+...+2^{2008}\)
\(2Q=2+2^2+2^3+...+2^{2009}\)
\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)
\(\Rightarrow Q=2^{2009}-1\)
Ta thấy \(Q\) là số đối của \(2^{2009}-1\)
\(\Rightarrow B=-1\)
Vậy \(B=-1\).
b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}+\dfrac{1}{2^{20}}\\ 2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{18}}+\dfrac{1}{2^{19}}\\ 2P-P=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{18}}+\dfrac{1}{2^{19}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}+\dfrac{1}{2^{20}}\right)\\ P=1-\dfrac{1}{2^{20}}\)
gúp mình bài 2 thôi nha