Cho \(A=3+3^2+3^3+...+3^{2008}\)
Tìm x biết \(2\times A+3=3x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 2 + 22 + 23 + ... + 22008
=> 2A = 22 + 23 + ... + 22009
=> 2A - A = 22009 - 2
=> A = 22009 - 2
Vậy A = 22009 - 2
=> 2A = 2.(22009 - 2)
=> 2A = 22010 - 4
=> 2A + 4 = 22010 - 4 + 4
=> 2A + 4 = 22010
=> 3x = 2010
Sai đề
\(A=2+2^2+2^3+...+2^{2008}\)
\(2A=2^2+2^3+2^4+...+2^{2009}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2009}\right)-\left(2+2^2+2^3+...+2^{2008}\right)\)
\(A=2^{2009}-2\)
\(\Rightarrow2.\left(2^{2009}-2\right)+4=2^{3x}\)
\(\Rightarrow2^{2010}-4+4=2^{3x}\)
\(\Rightarrow2^{2010}=2^{3x}\)
=> 3x = 2010
=> x =670
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
A= 3+3^2+3^3+...+3^2008
3A=3^2+3^3+3^4+...+3^2008+3^2009
3A - A= (3^2+3^3+3^4+...+3^2008+3^2009)-(3+3^2+3^3+...+3^2008)
2A= 3^2009-3
=>2A+3=3^2009
=>3^x=3^2009
=>x=2009
vậu x= 2009
3.A=3^2+3^3+3^4+...+3^2009
3.A-A=(3^2+3^3+3^4+...+3^2009)-(3+3^2+3^3+...+3^2008)
2.A=3^2009-3
2.A+3=3^2009-3+3
2.A+3=3^2009
đúng k cho mình nhé
Ta có: \(A=3+3^2+3^3+...+3^{2008}\)
\(3A=3^2+3^3+3^4+...+3^{2009}\)
\(3A-A=3^{2009}-3\)
Hay \(2A=3^{2009}-3\)
\(\Rightarrow2A+3=3^x\)
\(\Rightarrow\left(3^{2009}-3\right)+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Hok tốt nha^^
Có A=3+32+...+32008
=>3A=32+33+...+32009
=>3A-A=2A=32009-3
Thay 2A vào 2A+3=3x
Ta được: 32009-3+3=3x
=>32009=3x
=>x=2009
Vậy..
a) A= (5x-2).(x+1)-(x-3).(5x+1)-17(x+3)
=> A= 5x2+5x-2x-2-5x2-x+15x+3-17x-51
=> A= -50
b) B= (6x-5) × ( x+8) - (3x-1) × (2x+3) - 9(4x-3)
=> B= 6x2+48x-5x-40-6x2-9x+2x+3-36x+27
=> B= -10
c) C = x(x3 + x2 - 3x -2 ) - ( x2 -2 ) × ( x2+x -1 )
=> C= x4+x3-3x2-2x-x4+x3+3x2-2x-2
=> C= 2x3-4x-2
a) x+2x+3x+4x+...+2011x = 2012.2013
\(\Rightarrow\) x(1+2+3+4+...+2011) = 4050156
\(\Rightarrow\) x.2023066 = 4050156
\(\Rightarrow\) x = 4026/2011
\(A=3+3^2+3^3+...+3^{2008}\)
\(3A=3\left(3+3^2+3^3+...+3^{2008}\right)\)
\(3A=3^2+3^3+3^4+...+3^{2009}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3x\)
\(\Rightarrow3^{2009}-3+3=3x\)
\(\Rightarrow3^{2009}=3x\)
\(\Rightarrow x=3^{2008}\)
\(A=3+3^2+3^3+............+3^{2008}\)
\(\Leftrightarrow3A=3^2+3^3+............+3^{2008}+3^{2009}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+...........+3^{2009}\right)-\left(3+3^2+..........+3^{2008}\right)\)
\(\Leftrightarrow2A=3^{2009}-3\)
\(\Leftrightarrow2A+3=3^{2009}\)
\(\Leftrightarrow3^{2009}=3^x\)
\(\Leftrightarrow x=3^{2009}\left(tm\right)\)
Vậy ..................