K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{18}+3^{19}+3^{20}\right)\)

\(S=1.13+3^3.13+.......+3^{18}.13\)

\(S=13.\left(1+3^3+.....+3^{18}\right)\)

=> S chia hết cho 13 => (đpcm)

19 tháng 12 2021

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

16 tháng 1 2022

\(S=1+3+3^2+3^3+...+3^8+3^9\)

\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+3^2+...+3^8\right)⋮4\)

\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)

29 tháng 12 2022

bạn hình như viết sai đề

 

Đây là toán lớp 3 á!!!!
Mà bn có vt sai đề bài ko? Mk tính ko ra

17 tháng 12 2021

Các bạn giúp mình nhé

18 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

23 tháng 12 2021

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)

TH
Thầy Hùng Olm
Manager VIP
22 tháng 12 2022

\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(S=4x\left(1+3^2+...+3^8\right)\)

Vì 4 chia hết cho 4 nên S chia hết cho 4

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)

24 tháng 12 2023

\(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

25 tháng 12 2023

S = ( 3 + 3+33)+(34+35+36) + (37+38+39)

S = 3.(1+3+9)+34.(1+3+9)+37.(1+3+9)

S = 3.13 + 34.13+37.13

S = 13.(3+34+37) ⋮13 ( đpcm)

Tick cho mình

 

`#3107.101107`

`S = 3 + 3^2 + 3^3 + ... + 3^9`

`= (3 + 3^2 + 3^3) + ... + (3^7 + 3^8 + 3^9)`

`= 3(1 + 3 + 3^2) + ... + 3^7(1 + 3 +3^2)`

`= (1 + 3 + 3^2)(3 + ... + 3^7)`

`= 13(3 + ... + 3^7)` $\vdots 13$

$\Rightarrow S \vdots 13.$