K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Giải:

Đặt \(y=b\sqrt{1-x}\)

Ta có: \(\sqrt{a+y}=1+\sqrt{a-y}\)

\(\Leftrightarrow\sqrt{a+y}-\sqrt{a-y}=1\)

\(\Leftrightarrow\left(\sqrt{a+y}-\sqrt{a-y}\right)^2=1\)

\(\Leftrightarrow a+y-2\cdot\sqrt{a+y}\cdot\sqrt{a-y}+a-y=1\)

\(\Leftrightarrow2a-2\sqrt{a^2-y^2}=1\)

\(\Leftrightarrow2\sqrt{a^2-y^2}=2a-1\)

\(\Leftrightarrow\sqrt{a^2-y^2}=\dfrac{2\left(a-\dfrac{1}{2}\right)}{2}=a-\dfrac{1}{2}\)

\(\Leftrightarrow a^2-y^2=\left(a-\dfrac{1}{2}\right)^2=a^2-a+\dfrac{1}{4}\)

\(\Leftrightarrow y^2=a-\dfrac{1}{4}\)

\(\Leftrightarrow y=\sqrt{a-\dfrac{1}{4}}\)

\(\Leftrightarrow b\sqrt{1-x}=\sqrt{a-\dfrac{1}{4}}\)

\(\Leftrightarrow\sqrt{1-x}=\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\)

\(\Leftrightarrow1-x=\left(\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\right)^2\)

\(\Leftrightarrow x=1-\left(\dfrac{\sqrt{a-\dfrac{1}{4}}}{b}\right)^2\)

Vậy....................

8 tháng 8 2019

ai giúp mình với ạ ngaingung

18 tháng 7 2018

a)  \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=2\sqrt{2}\)

  \(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)  

       \(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)

       \(=\frac{4}{x-4}+1\)

       \(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_

21 tháng 11 2019

Mình cũng đang tìm câu hỏi như vậy. Ai biết làm giúp với

29 tháng 9 2017

a) Đặt \(t=b\sqrt{x}\)

\(pt\Leftrightarrow\sqrt{a+t}=2+\sqrt{a-t}\)

\(\Leftrightarrow\sqrt{a+t}-\sqrt{a-t}=2\)

\(\Leftrightarrow\left(\sqrt{a+t}-\sqrt{a-t}\right)^2=4\)

\(\Leftrightarrow a+t-2\sqrt{a+t}\cdot\sqrt{a-t}+a-t=4\)

\(\Leftrightarrow2a-2\sqrt{a^2-t^2}=4\)

\(\Leftrightarrow2\sqrt{a^2-t^2}=2a-4\)

\(\Leftrightarrow\sqrt{a^2-t^2}=\dfrac{2a-4}{2}=a-2\)

\(\Leftrightarrow a^2-t^2=a^2-4a+4\)

\(\Leftrightarrow t^2=4a-4\)

\(\Leftrightarrow t=\sqrt{4a-4}\Leftrightarrow b\sqrt{x}=\sqrt{4a-4}\)

\(\Leftrightarrow\sqrt{x}=\dfrac{\sqrt{4a-4}}{b}\)\(\Leftrightarrow x=\left(\dfrac{\sqrt{4a-4}}{b}\right)^2\)

b) \(\Leftrightarrow x=\left(\dfrac{\sqrt{4\cdot24205-4}}{25206}\right)^2\approx1,5238396\)

29 tháng 9 2017

a. Ta có: \(\sqrt{a+b\sqrt{x}}=2+\sqrt{a-b\sqrt{x}}\)

\(\Leftrightarrow\sqrt{a+b\sqrt{x}}-\sqrt{a-b\sqrt{x}}=2\)

\(\Leftrightarrow a+b\sqrt{x}-2\sqrt{\left(a+b\sqrt{x}\right)\left(a-b\sqrt{x}\right)}+a-b\sqrt{x}=4\)

\(\Leftrightarrow2a-4=2\sqrt{a^2-b^2x}\)

\(\Leftrightarrow a-2=\sqrt{a^2-b^2x}\)

\(\Leftrightarrow a^2-4a+4=a^2-b^2x\)

\(\Leftrightarrow b^2x=4a-4\)

\(\Leftrightarrow x=\dfrac{4a-4}{b^2}\)

Vậy \(x=\dfrac{4a-4}{b^2}\)

b. Thay a=24205, b=25206 vào biểu thức \(x=\dfrac{4a-4}{b^2}\), ta có: \(x=\dfrac{4.24205-4}{25206^2}\approx0,0001524\)

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((