K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

\(5x-x^2-7=-\left(x^2-5x+7\right)\)

\(=-\left(x^2-5x+\dfrac{25}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{5}{2}\right)^2-\dfrac{3}{4}\)

Ta có: \(-\left(x+\dfrac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{5}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)

Vậy biểu thức bé hơn 0 với mọi giá trị của x.

22 tháng 7 2017

\(5x-x^2-7=-x^2+5x-7=-\left(x^2-5x+7\right)\)

\(=-\left(x^2-2x\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7\right)\)

\(=-\left[\left(x^2-2x\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}+7\right]\)

\(=-\left[\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\right]< 0\forall x\)

22 tháng 7 2017

trhgjuyjyhyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

24 tháng 6 2020

A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2

        = 5x2 + 5

Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)

=> A(x) luôn dương với mọi x

B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9

        = -x2 - 2

Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)

=> B(x) luôn âm với mọi x 

24 tháng 6 2020

\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)

\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)

30 tháng 1 2016

TXĐ:D=R

bpt nghiệm đúng với mọi x \(\in\)R

\(\Leftrightarrow-1\le\frac{x^2+5x+a}{2x^2-3x+2}<7\)  với mọi \(x\in R\)

\(\Leftrightarrow\begin{cases}x^2+5x+a<7\left(2x^2-3x+2\right)\\x^2+5x+a\ge-\left(2x^2-3x+2\right)\end{cases}\)  với mọi \(x\in R\)

\(\Leftrightarrow\begin{cases}13x^2-26x+14-a>0\\3x^2+2x+a+2\ge0\end{cases}\)    với mọi \(x\in R\)

\(\Leftrightarrow\begin{cases}\Delta1<0;a1=13>0\\\Delta2\le0;a2=3>0\end{cases}\)

\(\Leftrightarrow\begin{cases}13^2-13\left(14-a\right)<0\\1^2-3\left(a+2\right)\le0\end{cases}\)

\(\Leftrightarrow\begin{cases}a<1\\a\ge\frac{-5}{3}\end{cases}\)

Kết hợp 2 ĐK rồi KL.

30 tháng 1 2016

a1 và a2 ở đâu ra vậy bạn ?

NV
23 tháng 7 2020

\(-2x^2+5x-\frac{7}{2}=-2\left(x-\frac{5}{4}\right)^2-\frac{3}{8}\)

Do \(-2\left(x-\frac{5}{4}\right)^2\le0;\forall x\Rightarrow-2\left(x-\frac{5}{4}\right)^2-\frac{3}{8}\le-\frac{3}{8}< 0;\forall x\) (đpcm)

5 tháng 2 2020

a)\(\frac{-1}{4x+2}< 0\)

\(\Leftrightarrow4x+2>0\)

\(\Leftrightarrow4x>-2\)

\(\Leftrightarrow x>\frac{-1}{2}\)

Vậy ...

b)\(\frac{-x^2-2x-3}{x^2+1}\)

Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)

Vì \(-\left(x+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)

Lại có \(x^2\ge0;\forall x\)

\(\Rightarrow x^2+1\ge1>0;\forall x\)

\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

7 tháng 10 2015

a) x2-6x+10

=(x^2-6x+9)+1

=(x-3)^2+1

vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0

Hay x^2-6x+10>0