Cho hình vuông ABCD. Gọi E, F, K lần lượt là trung điểm của AB, BC, CD
a) CM: AECK là hbh
b) CM: DF ⊥ CE (ở M)
c) AK cắt DF ở N. CM: N là trung điểm của DM
d) CM: AM = AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Theo bài ra ta có FC=BC2;EB=AB2FC=BC2;EB=AB2. Mà BC=ABBC=AB do ABCDABCD là hình vuông
⇒FC=EB⇒FC=EB
Xét tam giác vuông EBCEBC và FCDFCD có:
EB=FCEB=FC
BC=CDBC=CD (theo tính chất hình vuông)
⇒△EBC=△FCD⇒△EBC=△FCD (c.g.c)
⇒ECBˆ=FDCˆ⇒ECB^=FDC^ hay FCMˆ=MDCˆFCM^=MDC^
Do đó:
DMCˆ=1800−(MDCˆ+MCDˆ)=1800−(FCMˆ+MCDˆ)=1800−FCDˆ=1800−900=900DMC^=1800−(MDC^+MCD^)=1800−(FCM^+MCD^)=1800−FCD^=1800−900=900
⇒CE⊥DF⇒CE⊥DF
b) Gọi NN là trung điểm của DCDC. ANAN cắt DFDF tại KK
Ta thấy AE=AB2=AC2=NCAE=AB2=AC2=NC.
AB∥DCAB∥DC (tính chất hình vuông) nên AE∥NCAE∥NC
Tứ giác AECNAECN có 2 cạnh đối song song và bằng nhau nên AECNAECN là hình bình hành.
⇒AN∥EC⇒AN∥EC.
⇒KN∥MC⇒KN∥MC. Theo định lý Ta-let: DKKM=DNNC=1DKKM=DNNC=1
⇒DK=KM⇒DK=KM hay KK là trung điểm của DMDM
Mặt khác từ kết quả phần a ta cũng suy ra AK⊥DMAK⊥DM
Như vậy trong tam giác ADMADM thì AKAK vừa là đường trung tuyến vừa là đường cao nên ADMADM là tam giác cân tại AA, hay AD=AMAD=AM
Ta có đpcm.
a: Xét tứ giác AECK có
AE//CK
AE=CK
Do đó: AECK là hình bình hành
b: Xét ΔEBC vuông tại B và ΔFCD vuông tại C có
EB=FC
BC=CD
=>ΔEBC=ΔFCD
=>góc BEC=góc CFD
=>góc CFD+góc ECB=90 độ
=>DF vuông góc CE tại M
c: Xét ΔDMC có
K là trung điểm của DC
KN//MC
=>N là trung điểm của DM
=>ND=NM
1: E là trung điểm của AB
=>\(EA=EB=\dfrac{AB}{2}\)(1)
K là trung điểm của CD
=>\(DK=KC=\dfrac{DC}{2}\)(2)
ABCD là hình vuông
=>AB=DC(3)
Từ (1),(2),(3) suy ra AE=EB=CK=KD
Xét tứ giác AECK có
AE//CK
AE=CK
Do đó: AECK là hình bình hành
2: Xét ΔFCD vuông tại C và ΔEBC vuông tại B có
FC=EB
CD=BC
Do đó: ΔFCD=ΔEBC
=>\(\widehat{FDC}=\widehat{ECB}\)
mà \(\widehat{FDC}+\widehat{DFC}=90^0\)(ΔDFC vuông tại C)
nên \(\widehat{ECB}+\widehat{DFC}=90^0\)
=>DF\(\perp\)CE tại M
3: AECK là hình bình hành
=>AK//CE
AK//CE
CE\(\perp\)DF
Do đó: AK\(\perp\)CE tại N
Xét ΔDMC có
K là trung điểm của DC
KN//MC
Do đó: N là trung điểm của DM
4: Xét ΔADM có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔADM cân tại A
=>AD=AM
mà AD=AB
nên AM=AB
a)ta có:
AB=DC mà AE=1/2 AB, KC= 1/2 DC
=>AE=KC
Xét tứ giác AECK, ta có:
AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)
=>tứ giác AECK là hình bình hành.
b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp