Chứng minh rằng:
a, \(25x^2-10x+3>0\)
b, \(y^2-y+2>0\)
c,\(y^2-3y+5>0\)
d, \(16y^2-6y+9>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó\): \(C=x^2+2xy+y^2+y^2-6y+15\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)
\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y
\(\left(y-3\right)^2\ge0\)với mọi y
\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)
\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\
:
Ta có C = (x2 + 2xy + y2) + (y2 - 6x + 9) + 6
= (x + y)2 + (y - 3)2 + 6 \(\ge6>0\)(đpcm)
C = x2 + 2xy + y2 + y2 - 6y + 15
C = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) + 6
C = ( x + y )2 + ( y - 3 )2 + 6 ≥ 6 > 0 ∀ x ( đpcm )
D = x2 + y2 + 6x + 10y + 30
D = ( x2 + 6x + 9 ) + ( y2 + 10y + 25 ) - 4
D = ( x + 3 )2 + ( y + 5 )2 - 4 ≥ -4 ( xem lại đề nhớ )
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
Bài 1:
a) \(x^2-x+1\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0;\forall x\)
b) \(25x^2+10x+2\)
\(=25x^2+10x+1+1\)
\(=\left(5x+1\right)^2+1\ge1>0;\forall x\)
c) \(3x^2+2x+14\)
\(=3x^2+2x+\dfrac{1}{3}+\dfrac{41}{3}\)
\(=\left(\sqrt{3}x+\dfrac{\sqrt{3}}{3}\right)^2+\dfrac{41}{3}\ge\dfrac{41}{3}>0;\forall x\)
d) \(2x^2+y^2-2xy-2x+2\)
\(=x^2+y^2-2xy-2x+x^2+1+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+1\ge1>0;\forall x\)
Vậy ...
Bài 1:
Ta có:
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Ta có:
\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)
\(\Rightarrow4x-x^2-5< 0\)
\(\text{Tìm x:}\)
\(a.x\left(x-1\right)-3x+3x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
\(b.3x\left(x-2\right)+10-5x=0\)
\(3x^2-6x+10-5x=0\)
\(3x^2-11x+10=0\)
\(3x^2-11x=-10\)(bn xem lại đề nhé)
\(c.x^3-5x^2+x-5=0\)
\(x^3-5x^2+x=5\)
\(d.x^4-2x^3+10x^2-20x=0\)
bài 1:phân tích thành phân tử
a> x^2-6x-y^2+9
= (x-3)^2 -y^2
= (x-3 -y) (x-3+y)
b>x^2-xy-8x+8y
= x(x-y) - 8(x-y)
= (x-8) (x-y)
c>25-4x^2-4xy-y^2
= 5^2 - (2x + y)^2
= (5 - 2x -y) (5 +2x+y)
d>xy-xz-y+z
= x(y-z) - (y-z)
= (x-1) (y-z)
e>x^2-xz-yz+2xy+y^2
= (x+y)^2 - z(x+y)
= (x+y-z) (x+y)
g>x^2-4xy+4y^2-z^2-4zt-4t^2
= (x-2y)^2 - (z + 2t)^2
= (x-2y -x-2t) (x-2y + z +2t)
bài 2:tìm X bt
a>x.(x-1)-3x+3x=0
x (x-1) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0 và x=1
b>3x.(x-2)+10-5x=0
3x(x-2) - 5 (x-2)=0
(3x-5) (x-2) =0
\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)
c>x^3-5x^2+x-5=0
x^2 (x-5) + (x-5) =0
(x^2 +1)(x-5) =0
\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)
Vậy x=5
d>x^4-2x^3+10x^2-20x=0
x^3 (x-2) + 10x(x-2) =0
(x^3 + 10x) (x-2) =0
x(x^2 + 10) (x-2) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)
Vậy x=0 và x=2
Câu a.
Ta luôn có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\) (do a+b < a+b+c)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo từng vế rồi rút gọn ta đươc đpcm
Cảm ơn b nhé. B biết làm.câu b c d không giúp m với
a) \(x^2-x+1\)
\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b) \(x^2+2x+2\)
\(=\left(x^2+2x+1\right)+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
c) \(-x^2+4x-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
1)
a) \(3x^3y^2-6x^2y^3+9x^2y^2\)
\(=3x^2y^2\left(x-2y+3\right)\)
b) \(5x^2y^3-25x^3y^4+10x^3y^3\)
\(=5x^2y^3\left(1-5xy+2x\right)\)
a) \(25x^2-10x+3=25x^2-10x+1+2\)
\(=\left(5x-1\right)^2+2\)
Vì \(\left(5x-1\right)^2\ge0\forall x\)
Nên \(\left(5x-1\right)^2+2>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
b) \(y^2-y+2=y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\)
Vì \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\)
Nên \(\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
c) \(y^2-3y+5=y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(y-\dfrac{3}{2}\right)^2\ge0\forall x\)
Nên \(\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
d) \(16y^2-6y+9=16y^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\)
\(=\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\)
Vì \(\left(4x-\dfrac{3}{4}\right)^2\ge0\forall x\)
Nên \(\left(4x-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall x\)
Vậy biểu thức luôn lớn hơn 0 với mọi giá trị x.
a,
\(25x^2-10x+3\\ =\left(5x\right)^2-10x+1+2\\ =\left(5x-1\right)^2+2\\ \left(5x-1\right)^2\ge0\forall x\\ \Rightarrow\left(5x-1\right)^2+2\ge2\forall x\\ \Rightarrow\left(5x-1\right)^2+2>0\forall x\)
b,
\(y^2-y+2\\ =y^2-y+\dfrac{1}{4}+\dfrac{7}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\\ \left(y-\dfrac{1}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall y\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall y\)
c,
\(y^2-3y+5\\ =y^2-3y+\dfrac{9}{4}+\dfrac{11}{4}\\ =\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\\ \left(y-\dfrac{3}{2}\right)^2\ge0\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall y\\ \Rightarrow\left(y-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall y\)
d,
\(16y^2-6y+9\\ =\left(4y\right)^2-6y+\dfrac{9}{16}+\dfrac{135}{16}\\ =\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\\ \left(4y-\dfrac{3}{4}\right)^2\ge0\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}\ge\dfrac{135}{16}\forall y\\ \Rightarrow\left(4y-\dfrac{3}{4}\right)^2+\dfrac{135}{16}>0\forall y\)