tìm n thuộc Z biết
a) (1/2)^n=1/32
b)343/125=(7/5)^n
c)1/9.27=3^n
d)3^-2.3^4.3^n=3^7
giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/9.27^n=3^n
3^n=3^n
=>n={0;1;2;3...}
Tích nha ^_^ !!!
a) Ta có: \(\frac{1}{9}\cdot27^n=3^n\)
\(\Leftrightarrow\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Leftrightarrow3^{3n}=3^{n+2}\)
\(\Rightarrow3n=n+2\)
\(\Rightarrow n=1\)
b) Ta có: \(3^2.3^4.3^n=3^7\)
\(\Rightarrow3^n=3\)
\(\Rightarrow n=1\)
c) Ta có: \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\cdot\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d) Ta có: \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\frac{1}{2^{5n}}\cdot2^{4n}=2^{11}\)
\(\Leftrightarrow2^{4n}=2^{5n+11}\)
\(\Rightarrow4n=5n+11\)
\(\Rightarrow n=-11\)
Bài 1 :
a) 72x-1 = 343
=> 72x-1 = 73
=> 2x - 1 = 3 => 2x = 4 => x = 2
b) (7x - 11)3 = 25.32 + 200
=> (7x - 11)3 = 32.9 + 200
=> (7x - 11)3 = 488
xem kĩ lại đề này :vvv
c) 174 - (2x - 1)2 = 53
=> (2x - 1)2 = 174 - 53
=> (2x - 1)2 = 174 - 125 = 49
=> (2x - 1)2 = (\(\pm\)7)2
=> \(\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Mà x \(\in\)N nên x = 4( thỏa mãn điều kiện)
Bài 2 :
a) x5 = 32 => x5 = 25 => x = 2
b) (x + 2)3 = 27
=> (x + 2)3 = 33
=> x + 2 = 3 => x = 3 - 2 = 1
c) (x - 1)4 = 16
=> (x - 1)4 = 24
=> x - 1 = 2 => x = 3 ( vì đề bài cho x thuộc N nên thỏa mãn)
d) (x - 1)8 = (x - 1)6
=> (x - 1)8 - (x - 1)6 = 0
=> (x - 1)6 [(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^6=0\\\left(x-1\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=\left(\pm1\right)^2\end{cases}}\)
+) x - 1 = 1 => x = 2 ( tm)
+) x - 1 = -1 => x = 0 ( tm)
Vậy x = 1,x = 2,x = 0
a) 5^3 = 125
b)3^4.3^3=3^7
c)27.3^2=243
d)49.7^2=2401
e) chịu -_-
a)
1/9 . 34.3n=37
=>3-2.34.3n=37
=>3-2+4+n=37
=>-2+4+n=7
=>n=7-(-2)-4
=>n=5
a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)
\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)
\(\Rightarrow5n=5\Rightarrow n=1\)
b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)
\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)
\(\Rightarrow1+n=2\Rightarrow n=1\)
c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)
\(\Rightarrow6+n=7\Rightarrow n=1\)
d)\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)
\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)
\(\Rightarrow n-1=5\Rightarrow n=6\)
e)\(243\ge3^n\ge9.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^4\)
\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)
f)\(2^{n+3}.2^n=128\)
\(\Rightarrow2^{n+3+n}=2^7\)
\(\Rightarrow2^{2n+3}=2^7\)
\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)
Hok tối
a) \(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^n=\dfrac{1^5}{2^5}\)
\(\Rightarrow n=5\)
Vậy n = 5
c) \(\dfrac{1}{9}\cdot27=3^n\)
\(\Rightarrow3=3^n\)
\(\Rightarrow n=1\)
Vậy n = 1